ON A FUNCTIONAL EQUATION

被引:0
作者
Ding Yi [1 ]
机构
[1] New Jersey City Univ, Dept Math, Jersey City, NJ USA
关键词
Functional equation; Zeta function; Munts formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the author derives a functional equation eta(s) = [(pi/4)(s-1/2)root 2/pi Gamma(1-s) sin(pi s/2)]eta(1-s) (1) of the analytic function eta(s) which is defined by eta(s) = 1(-s)-3(-s)-5(-s)+7(-s)+... (2) for complex variable s with Re s > 1, and is defined by analytic continuation for other values of s. The author proves (1) by Ramanujan identity (see [1], [3]). Her method provides a new derivation of the functional equation of Riemann zeta function by using Poisson summation formula.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 3 条
[1]  
Titchmarsh E. C., 1948, Introduction to the theory of Fourier integrals", V2nd
[2]  
TITCHMARSH EC, 1954, THEORY RIEMANN ZETA
[3]  
YI D, DISTRIBUTION FORM RA