First Examples of Near-Infrared Luminescent Poly(methyl methacrylate)-Supported Metallopolymers Based on Zn2Ln-Arrayed Schiff Base Complexes

被引:33
作者
Miao, Tie-Zheng [1 ]
Feng, Wei-Xu [1 ]
Zhang, Zhao [1 ]
Su, Pei-Yang [1 ]
Lu, Xing-Qiang [1 ]
Song, Ji-Rong [1 ]
Fan, Dai-Di [1 ]
Wong, Wai-Kwok [2 ]
Jones, Richard A. [3 ]
Su, Cheng-Yong [4 ]
机构
[1] NW Univ Xian, Shaanxi Key Lab Degradable Med Mat, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China
[2] Hong Kong Baptist Univ, Dept Chem, Kowloon Tong, Hong Kong, Peoples R China
[3] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
[4] Sun Yat Sen Univ, Sch Chem & Chem Engn, MOE Lab Bioinorgan & Synthet Chem KLGH EI Environ, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Metallopolymers; Lanthanides; Copolymerization; Luminescence; Schiff bases; HYBRID MATERIALS; LANTHANIDE IONS; ND; PERSPECTIVES; YB; LN;
D O I
10.1002/ejic.201402015
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The first examples of Wolf Type II Zn(2)Ln-containing metallopolymers poly{MMA-co-[Zn-2(L)(2)(4-vp)2(L)n(NO3)(3)]} (Ln = La, Nd, Yb, Er, Gd; H2L = N,N-bis(salicylidene)ethylene-1,2-diamine; 4-vp = 4-vinylpyridine; MMA = methyl methacrylate) are obtained from the controlled copolymerization of heterotrinuclear Zn(2)Ln-arrayed complexes [Zn-2(L)(2)(4-vp)(2)Ln(NO3)(3)] (Ln = La, 1; Ln = Nd, 2; Ln = Yb, 3; Ln = Er, 4; Ln = Gd, 5) with MMA. The strong and characteristic near-infrared (NIR) luminescent Ln3+-centered emission for each of the PMMA-supported poly{MMA-co-[Zn-2(L)(2)(4-vp)(2)Ln(NO3)(3)]} (Ln = Nd, Yb, Er) hybrid materials is retained with somewhat higher intrinsic quantum yields than those of the respective Zn(2)Ln-arrayed complex. Especially for poly(MMA-co-3), which has more efficient sensitization from both ligand-centered singlet ((LC)-L-1) and triplet ((LC)-L-3) states of the chromophores, the concentration self-quenching of Yb3+-based NIR luminescence could be effectively prevented.
引用
收藏
页码:2839 / 2848
页数:10
相关论文
共 49 条
[41]   Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads [J].
Ward, Michael D. .
COORDINATION CHEMISTRY REVIEWS, 2010, 254 (21-22) :2634-2642
[42]   RADIATIVE AND MULTIPHONON RELAXATION OF RARE-EARTH IONS IN Y2O3 [J].
WEBER, MJ .
PHYSICAL REVIEW, 1968, 171 (02) :283-&
[43]   Functional soft materials from metallopolymers and metallosupramolecular polymers [J].
Whittell, George R. ;
Hager, Martin D. ;
Schubert, Ulrich S. ;
Manners, Ian .
NATURE MATERIALS, 2011, 10 (03) :176-188
[44]  
Wolf MO, 2001, ADV MATER, V13, P545, DOI 10.1002/1521-4095(200104)13:8<545::AID-ADMA545>3.0.CO
[45]  
2-3
[46]   Monochromic Red-Emitting Nonconjugated Copolymers Containing Double-Carrier-Trapping Phosphine Oxide Eu3+ Segments: Toward Bright and Efficient Electroluminescence [J].
Xu, Hui ;
Zhu, Rui ;
Zhao, Ping ;
Huang, Wei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31) :15627-15638
[47]   Recent progress in photofunctional lanthanide hybrid materials [J].
Yan, Bing .
RSC ADVANCES, 2012, 2 (25) :9304-9324
[48]   Main-chain supramolecular block copolymers [J].
Yang, Si Kyung ;
Ambade, Ashootosh V. ;
Weck, Marcus .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (01) :129-137
[49]   Design and synthesis of a near infra-red luminescent hexanuclear Zn-Nd prism [J].
Yang, XP ;
Jones, RA ;
Wong, WK ;
Lynch, V ;
Oye, MM ;
Holmes, AL .
CHEMICAL COMMUNICATIONS, 2006, (17) :1836-1838