ON SOLUTIONS TO STOCHASTIC SET DIFFERENTIAL EQUATIONS OF ITO TYPE UNDER THE NON-LIPSCHITZIAN CONDITION

被引:0
作者
Fei, Weiyin [1 ]
Xia, Dengfeng [1 ]
机构
[1] Anhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Anhui, Peoples R China
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2013年 / 22卷 / 01期
基金
中国国家自然科学基金; 安徽省自然科学基金;
关键词
INCLUSIONS; INTEGRALS; SPACES; COEFFICIENTS; CONVERGENCE; MARTINGALES; EXISTENCE; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper makes a research into a class of stochastic set differential equations (SSDEs) disturbed by l-dimensional Brownian motion with non-Lipschitzian coefficients. The solutions of SSDEs are set-valued stochastic processes. Thus, the existence and uniqueness of solutions to SSDEs with non-Lipschitzian coefficients is first proven. And their continuous dependence on initial conditions and a stability property are then investigated. The main mathematical tool is the Bihari's inequality.
引用
收藏
页码:137 / 155
页数:19
相关论文
共 42 条
[1]  
Ahmed NU, 2007, DYNAM SYST APPL, V16, P13
[2]  
Ahmed N. U., 2002, Discussiones Mathematicae Differential Inclusions, Control and Optimization, V22, P125, DOI 10.7151/dmdico.1035
[3]  
Ahmed N. U., 1994, M DEKKER LECT NOTES, V160, P1
[4]   NONLINEAR STOCHASTIC DIFFERENTIAL-INCLUSIONS ON BANACH-SPACE [J].
AHMED, NU .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1994, 12 (01) :1-10
[5]  
[Anonymous], 2010, COMM STOCH ANAL
[6]   The viability theorem for stochastic differential inclusions [J].
Aubin, JP .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (01) :1-15
[7]   Almost sure convergence and decomposition of multivalued random processes [J].
Avgerinos, EP ;
Papageorgiou, NS .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (02) :401-435
[8]  
BAGCHI S, 1985, ANN I H POINCARE-PR, V21, P313
[9]  
Brandao Lopes Pinto A. I., 1970, B UNIONE MAT ITAL, V4, P1
[10]  
De Blasi FS, 2007, DYNAM SYST APPL, V16, P73