Discontinuous Transitions and Rhythmic States in the D-Dimensional Kuramoto Model Induced by a Positive Feedback with the Global Order Parameter

被引:76
作者
Dai, X. [1 ,2 ,3 ]
Li, X. [1 ,4 ]
Guo, H. [1 ,2 ,3 ]
Jia, D. [1 ,2 ,3 ]
Perc, M. [5 ,6 ,7 ]
Manshour, P. [8 ]
Wang, Z. [1 ,2 ]
Boccaletti, S. [3 ,9 ,10 ]
机构
[1] Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[5] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
[6] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 404, Taiwan
[8] Persian Gulf Univ, Phys Dept, Bushehr 75169, Iran
[9] CNR, Inst Complex Syst, Via Madonna del Piano 10, I-150019 Sesto Fiorentino, Italy
[10] Natl Res Univ, Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow Region, Russia
基金
中国国家自然科学基金;
关键词
SYNCHRONIZATION; POPULATIONS;
D O I
10.1103/PhysRevLett.125.194101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From fireflies to cardiac cells, synchronization governs important aspects of nature, and the Kuramoto model is the staple for research in this area. We show that generalizing the model to oscillators of dimensions higher than 2 and introducing a positive feedback mechanism between the coupling and the global order parameter leads to a rich and novel scenario: the synchronization transition is explosive at all even dimensions, whilst it is mediated by a time-dependent, rhythmic, state at all odd dimensions. Such a latter circumstance, in particular, differs from all other time-dependent states observed so far in the model. We provide the analytic description of this novel state, which is fully corroborated by numerical calculations. Our results can, therefore, help untangle secrets of observed time-dependent swarming and flocking dynamics that unfold in three dimensions, and where this novel state could thus provide a fresh perspective for as yet not understood formations.
引用
收藏
页数:6
相关论文
共 41 条
[1]   Solvable model for chimera states of coupled oscillators [J].
Abrams, Daniel M. ;
Mirollo, Rennie ;
Strogatz, Steven H. ;
Wiley, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[2]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[3]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[4]  
[Anonymous], 2008, Not by Genes Alone: How Culture Transformed Human Evolution
[5]   Coexistence of Quantized, Time Dependent, Clusters in Globally Coupled Oscillators [J].
Bi, Hongjie ;
Hu, Xin ;
Boccaletti, S. ;
Wang, Xingang ;
Zou, Yong ;
Liu, Zonghua ;
Guan, Shuguang .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)
[6]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94
[7]  
Buzaki G., 2006, Rhythms of the Brain
[8]   Editorial overview: Brain rhythms and dynamic coordination [J].
Buzsaki, Gyoergy ;
Freeman, Walter .
CURRENT OPINION IN NEUROBIOLOGY, 2015, 31 :V-IX
[9]   Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model [J].
Chandra, Sarthak ;
Girvan, Michelle ;
Ott, Edward .
CHAOS, 2019, 29 (05)
[10]   Continuous versus Discontinuous Transitions in the D-Dimensional Generalized Kuramoto Model: Odd D is Different [J].
Chandra, Sarthak ;
Girvan, Michelle ;
Ott, Edward .
PHYSICAL REVIEW X, 2019, 9 (01)