The ins and outs of MYC regulation by posttranslational mechanisms

被引:203
作者
Vervoorts, Jorg [1 ]
Luescher-Firzlaff, Juliane [1 ]
Luescher, Bernhard [1 ]
机构
[1] Univ Aachen, Rhein Westfal TH Klinikum, Inst Biochem, Abt Biochem & Mol Biol, D-52057 Aachen, Germany
关键词
D O I
10.1074/jbc.R600017200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The proteins of the MYC family are key regulators of cell behavior. MYC, originally identified as an oncoprotein, affects growth, proliferation, differentiation, and apoptosis of cells through its ability to regulate a significant number of genes. In addition MYC governs events associated with tumor progression, including genetic stability, migration, and angiogenesis. The pleiotropic activities attributed to MYC and their balanced control requires that the expression and function of MYC is tightly controlled. Indeed many different pathways and factors have been identified that impinge on MYC gene expression and protein function. In particular the protein is subject to different posttranslational modifications, including phosphorylation, ubiquitinylation, and acetylation. Here we discuss the latest developments regarding these modifications that control various aspects of MYC function, including its stability, the interaction with partner proteins, and the transcriptional potential.
引用
收藏
页码:34725 / 34729
页数:5
相关论文
共 63 条
[1]   Transcriptional regulation and transformation by MYC proteins [J].
Adhikary, S ;
Eilers, M .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (08) :635-645
[2]   The ubiquitin ligase HectH9 regulates transcriptional activation by myc and is essential for tumor cell proliferation [J].
Adhikary, S ;
Marinoni, F ;
Hock, A ;
Hulleman, E ;
Popov, N ;
Beier, R ;
Bernard, S ;
Quarto, M ;
Capra, M ;
Goettig, S ;
Kogel, U ;
Scheffner, M ;
Helin, K ;
Eilers, M .
CELL, 2005, 123 (03) :409-421
[3]   Joining the cell survival squad: an emerging role for protein kinase CK2 [J].
Ahmed, K ;
Gerber, DA ;
Cochet, C .
TRENDS IN CELL BIOLOGY, 2002, 12 (05) :226-230
[4]   Protein phosphatase 2A regulatory subunit b56α associates with c-Myc and negatively regulates c-Myc accumulation [J].
Arnold, HK ;
Sears, RC .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (07) :2832-2844
[5]   c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover [J].
Bahram, F ;
von der Lehr, N ;
Cetinkaya, C ;
Larsson, LG .
BLOOD, 2000, 95 (06) :2104-2110
[6]   c-Myc phosphorylation is required for cellular response to oxidative stress [J].
Benassi, B ;
Fanciulli, M ;
Fiorentino, F ;
Porrello, A ;
Chiorino, G ;
Loda, M ;
Zupi, G ;
Biroccio, A .
MOLECULAR CELL, 2006, 21 (04) :509-519
[7]   CASEIN KINASE-II INHIBITS THE DNA-BINDING ACTIVITY OF MAX HOMODIMERS BUT NOT MYC MAX HETERODIMERS [J].
BERBERICH, SJ ;
COLE, MD .
GENES & DEVELOPMENT, 1992, 6 (02) :166-176
[8]  
BOUSSET K, 1993, ONCOGENE, V8, P3211
[9]   Translocations involving c-myc and c-myc function [J].
Boxer, LM ;
Dang, CV .
ONCOGENE, 2001, 20 (40) :5595-5610
[10]   Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis [J].
Channavajhala, P ;
Seldin, DC .
ONCOGENE, 2002, 21 (34) :5280-5288