An algorithm for the retrieval of albedo from space using semiempirical BRDF models

被引:870
作者
Lucht, W
Schaaf, CB
Strahler, AH
机构
[1] Boston Univ, Dept Geog, Boston, MA 02215 USA
[2] Boston Univ, Ctr Remote Sensing, Boston, MA 02215 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2000年 / 38卷 / 02期
基金
美国国家航空航天局;
关键词
albedo; bidirectional reflectance distribution function; EOS; MODIS; remote sensing algorithm;
D O I
10.1109/36.841980
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral albedo may be derived from atmospherically corrected, cloud-cleared multiangular reflectance observations through the inversion of a bidirectional reflectance distribution function (BRDF) model and angular integration. This paper outlines an algorithm suitable for this task that makes use of kernel-based BRDF models. Intrinsic land surface albedos are derived, which may be used to derive actual albedo by taking into account the prevailing distribution of diffuse skylight, Spectral-to-broadband conversion is achieved using band-dependent weighting factors. The validation of a suitable BRDF model, the semiempirical Ross-Li (reciprocal RossThick-LiSparse) model and its performance under conditions of sparse angular sampling and noisy reflectances are discussed, showing that the retrievals obtained are generally reliable. The solar-zenith angle dependence of albedo may be parameterized by a simple polynomial that makes it unnecessary for the user to be familiar with the underlying BRDF model. The algorithm given is that used for the production of a BRDF/albedo standard data product from NASA's EOS-MODIS sensor, for which an at-launch status is provided. Finally, the algorithm is demonstrated on combined AVHRR and GOES observations acquired over New England, from which solar zenith angle-dependent albedo maps with a nominal spatial resolution of 1 km are derived in the visible band. The algorithm presented may be employed to derive albedo from space-based multiangular measurements and also serves as a guide for the use of the MODIS BRDF/albedo product.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 104 条
[1]   MODELING BIDIRECTIONAL RADIANCE MEASUREMENTS COLLECTED BY THE ADVANCED SOLID-STATE ARRAY SPECTRORADIOMETER (ASAS) OVER OREGON TRANSECT CONIFER FORESTS [J].
ABUELGASIM, AA ;
STRAHLER, AH .
REMOTE SENSING OF ENVIRONMENT, 1994, 47 (02) :261-275
[2]  
[Anonymous], 1977, MN160 NBS
[3]   Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 [J].
Barnes, WL ;
Pagano, TS ;
Salomonson, VV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1088-1100
[4]   On the information content of multiple view angle (MVA) images [J].
Barnsley, MJ ;
Allison, D ;
Lewis, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (09) :1937-1960
[5]   Contrasting physiological and structural vegetation feedbacks in climate change simulations [J].
Betts, RA ;
Cox, PM ;
Lee, SE ;
Woodward, FI .
NATURE, 1997, 387 (6635) :796-799
[6]  
BONAN GB, 1993, J CLIMATE, V6, P1882, DOI 10.1175/1520-0442(1993)006<1882:IOSSHI>2.0.CO
[7]  
2
[8]   DERIVING SURFACE ALBEDO MEASUREMENTS FROM NARROW-BAND SATELLITE DATA [J].
BREST, CL ;
GOWARD, SN .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1987, 8 (03) :351-367
[9]  
BRIEGLEB BP, 1986, J CLIM APPL METEOROL, V25, P214, DOI 10.1175/1520-0450(1986)025<0214:CORCSA>2.0.CO
[10]  
2