Theory of Liquid Film Growth and Wetting Instabilities on Graphene

被引:7
作者
Sengupta, Sanghita [1 ,2 ]
Nichols, Nathan S. [1 ,2 ]
Del Maestro, Adrian [1 ,2 ,3 ]
Kotov, Valeri N. [1 ,2 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Univ Vermont, Mat Sci Program, Burlington, VT 05405 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
关键词
LIFSHITZ THEORY; HELIUM; TRANSITIONS; SURFACE;
D O I
10.1103/PhysRevLett.120.236802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases of hydrogen, helium, and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, submerged or suspended. We find that the presence of graphene has a significant effect in all configurations. When placed on a substrate, the polarizability of graphene can increase the strength of the total van der Waals force by a factor of 2 near the surface, enhancing the propensity towards wetting. In a suspended geometry unique to two-dimensional materials, where graphene is able to wet on only one side, liquid film growth becomes arrested at a critical thickness, which may trigger surface instabilities and pattern formation analogous to spinodal dewetting. The existence of a mesoscopic critical film with a tunable thickness provides a platform for the study of a continuous wetting transition, as well as the engineering of custom liquid coatings. These phenomena are robust to some mechanical deformations and are also universally present in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Novel effects of strains in graphene and other two dimensional materials [J].
Amorim, B. ;
Cortijo, A. ;
de Juan, F. ;
Grushine, A. G. ;
Guinea, F. ;
Gutierrez-Rubio, A. ;
Ochoa, H. ;
Parente, V. ;
Roldan, R. ;
San-Jose, P. ;
Schiefele, J. ;
Sturla, M. ;
Vozmediano, M. A. H. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 :1-54
[2]   Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures [J].
Badalyan, S. M. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2012, 85 (19)
[3]  
Barash Yu. S., 1976, Soviet Physics - Uspekhi, V18, P305, DOI 10.1070/PU1975v018n05ABEH001958
[4]   Chirality and correlations in graphene [J].
Barlas, Yafis ;
Pereg-Barnea, T. ;
Polini, Marco ;
Asgari, Reza ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[5]   Hamaker constants of inorganic materials [J].
Bergstrom, L .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1997, 70 :125-169
[6]   Wetting of alkanes on water [J].
Bertrand, E ;
Bonn, D ;
Broseta, D ;
Dobbs, H ;
Indekeu, JO ;
Meunier, J ;
Ragil, K ;
Shahidzadeh, N .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2002, 33 (1-3) :217-222
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]   Wetting and spreading [J].
Bonn, Daniel ;
Eggers, Jens ;
Indekeu, Joseph ;
Meunier, Jacques ;
Rolley, Etienne .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :739-805
[9]   SPREADING OF NONVOLATILE LIQUIDS IN A CONTINUUM PICTURE [J].
BROCHARDWYART, F ;
DIMEGLIO, JM ;
QUERE, D ;
DEGENNES, PG .
LANGMUIR, 1991, 7 (02) :335-338
[10]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462