Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation

被引:128
作者
Duan, Xiaoguang [1 ]
Kang, Jian [2 ]
Tian, Wenjie [1 ]
Zhang, Huayang [1 ]
Ho, Shih-Hsin [3 ]
Zhu, Yi-An [4 ]
Ao, Zhimin [5 ]
Sun, Hongqi [6 ]
Wang, Shaobin [1 ,2 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
[3] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin, Heilongjiang, Peoples R China
[4] ECUST, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[5] Guangdong Univ Technol, Inst Environm Hlth & Pollut Control, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[6] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Nanocomposites; Peroxymonosulfate; Sulfate radical; Nitrogen doping; Metal encapsulation; ACTIVE-SITES; PEROXYMONOSULFATE ACTIVATION; ORGANIC CONTAMINANTS; DOPED GRAPHENE; DEGRADATION; NANOTUBES; CATALYSTS; OXYGEN; CARBOCATALYSIS; REDUCTION;
D O I
10.1016/j.apcatb.2019.117795
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient water remediation relies on robust and capable catalysts to drive the cutting-edge purification technologies. In this work, Prussian blue analogues (PBA) are engaged as the starting materials to fabricate various transition metal (TM)@carbon composites for water decontamination. The encapsulated metallic cobalt is unveiled to be more favorable to deliver electrons to the adjacent carbons than CoP and Co3O4, due to the low work function, high conductivity and formation of multiple Co-C bonds for electron tunnelling. Such a hybrid structure significantly tailors the electron density of the carbon lattice, which is the decisive factor influencing activating peroxymonosulfate (PMS) to generate highly reactive sulfate radicals for degradation of contaminants, meanwhile achieving outstanding long-term stability. Deliberate material design and theoretical computations unveil the structure-activity regimes of the composite materials in promoted carbocatalysis. This proof-of-concept study dedicates to elucidating the principles in developing fine-tuned and high-performance TM@carbon hybrids for advanced catalytic oxidation.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Switchable Fe/Co Prussian blue networks and molecular analogues [J].
Aguila, David ;
Prado, Yoann ;
Koumousi, Evangelia S. ;
Mathoniere, Corine ;
Clerac, Rodolphe .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (01) :203-224
[2]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[3]   Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (20) :4790-4797
[4]   Radical generation by the interaction of transition metals with common oxidants [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (13) :3705-3712
[5]   Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone-Wales Defect and Curvature Effect [J].
Chai, Guo-Liang ;
Hou, Zhufeng ;
Shu, Da-Jun ;
Ikeda, Takashi ;
Terakura, Kiyoyuki .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (39) :13629-13640
[6]   Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes [J].
Chen, Xiao ;
Oh, Wen-Da ;
Hu, Zhong-Ting ;
Sun, Yuan-Miao ;
Webster, Richard D. ;
Li, Shu-Zhou ;
Lim, Teik-Thye .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 225 :243-257
[7]  
Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/NNANO.2015.340, 10.1038/nnano.2015.340]
[8]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[9]   Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective [J].
Deng, Jiao ;
Deng, Dehui ;
Bao, Xinhe .
ADVANCED MATERIALS, 2017, 29 (43)
[10]   Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Yu, Liang ;
Yang, Fan ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1919-1923