An improved geographically weighted regression model for PM2.5 concentration estimation in large areas

被引:84
作者
Zhai, Liang [1 ]
Li, Shuang [2 ]
Zou, Bin [3 ]
Sang, Huiyong [1 ]
Fang, Xin [3 ]
Xu, Shan [3 ]
机构
[1] Chinese Acad Surveying & Mapping, Natl Geog Condit Monitoring Res Ctr, Beijing 100830, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Peoples R China
[3] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Hunan, Peoples R China
关键词
GWR; PCA-GWR; PM2.5; Remote sensing; Collinearity; China; LAND-USE REGRESSION; PRINCIPAL COMPONENT; PREDICTION; SELECTION; OZONE; NO2;
D O I
10.1016/j.atmosenv.2018.03.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Considering the spatial non-stationary contributions of environment variables to PM2.5 variations, the geographically weighted regression (GWR) modeling method has been using to estimate PM2.5 concentrations widely. However, most of the GWR models in reported studies so far were established based on the screened predictors through pretreatment correlation analysis, and this process might cause the omissions of factors really driving PM2.5 variations. This study therefore developed a best subsets regression (BSR) enhanced principal component analysis-GWR (PCA-GWR) modeling approach to estimate PM2.5 concentration by fully considering all the potential variables contributions simultaneously. The performance comparison experiment between PCA-GWR and regular GWR was conducted in the Beijing-Tianjin-Hebei (BTH) region over a one-year-period. Results indicated that the PCA-GWR modeling outperforms the regular GWR modeling with obvious higher model fitting- and cross-validation based adjusted R-2 and lower RMSE. Meanwhile, the distribution map of PM2.5 concentration from PCA-GWR modeling also clearly depicts more spatial variation details in contrast to the one from regular GWR modeling. It can be concluded that the BSR enhanced PCA-GWR modeling could be a reliable way for effective air pollution concentration estimation in the coming future by involving all the potential predictor variables' contributions to PM2.5 variations.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 42 条
[1]   Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations [J].
Abdul-Wahab, SA ;
Bakheit, CS ;
Al-Alawi, SM .
ENVIRONMENTAL MODELLING & SOFTWARE, 2005, 20 (10) :1263-1271
[2]  
Bae Jaegug, 2016, [Journal of Advanced Marine Engineering and Technology, 한국마린엔지니어링학회지], V40, P138, DOI 10.5916/jkosme.2016.40.2.138
[3]   Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar [J].
Banerjee, T. ;
Barman, S. C. ;
Srivastava, R. K. .
ENVIRONMENTAL POLLUTION, 2011, 159 (04) :865-875
[4]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[5]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[6]   Geographically weighted regression: A method for exploring spatial nonstationarity [J].
Brunsdon, C ;
Fotheringham, AS ;
Charlton, ME .
GEOGRAPHICAL ANALYSIS, 1996, 28 (04) :281-298
[7]   Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis [J].
Chattopadhyay, Surajit ;
Chattopadhyay, Goutami .
PURE AND APPLIED GEOPHYSICS, 2012, 169 (10) :1891-1908
[8]   Uncertainty, ensembles and air quality dispersion modeling: applications and challenges [J].
Dabberdt, WF ;
Miller, E .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (27) :4667-4673
[9]   Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation [J].
Diego Rodriguez, Juan ;
Perez, Aritz ;
Antonio Lozano, Jose .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) :569-575
[10]   Predictive mapping of air pollution involving sparse spatial observations [J].
Diem, JE ;
Comrie, AC .
ENVIRONMENTAL POLLUTION, 2002, 119 (01) :99-117