Bernstein type theorems for higher codimension

被引:62
作者
Jost, J [1 ]
Xin, YL
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Fudan Univ, Math Inst, Shanghai 200433, Peoples R China
关键词
Arbitrary Dimension; Type Theorem; Regularity Theory; Grassmann Manifold; Minimal Graph;
D O I
10.1007/s005260050142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show a Bernstein theorem for minimal graphs of arbitrary dimension and codimension under a bound on the slope that improves previous results and is independent of the dimension and codimension. The proof depends on the regularity theory for the harmonic Gauss map and the geometry of Grassmann manifolds.
引用
收藏
页码:277 / 296
页数:20
相关论文
共 18 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]  
[Anonymous], 1970, J DIFFERENTIAL GEOM
[3]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[4]   A GENERALIZED MAXIMUM PRINCIPLE AND ITS APPLICATIONS IN GEOMETRY [J].
CHEN, Q ;
XIN, YL .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (02) :355-366
[5]  
Chern S. S., 1965, ABH MATH SEM HAMBURG, V29, P77
[6]   MINIMUM AND CONJUGATE POINTS IN SYMMETRIC SPACES [J].
CRITTENDEN, R .
CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (02) :320-&
[7]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[8]   SOME RIGIDITY THEOREMS FOR MINIMAL SUB-MANIFOLDS OF THE SPHERE [J].
FISCHERCOLBRIE, D .
ACTA MATHEMATICA, 1980, 145 (1-2) :29-46
[9]  
GULLIVER R, 1987, J REINE ANGEW MATH, V381, P61
[10]   HARMONIC-MAPPINGS AND MINIMAL SUB-MANIFOLDS [J].
HILDEBRANDT, S ;
JOST, J ;
WIDMAN, KO .
INVENTIONES MATHEMATICAE, 1980, 62 (02) :269-298