Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision

被引:53
作者
Song, Boxiang [1 ]
Jiang, Zhihao [2 ]
Liu, Zerui [1 ]
Wang, Yunxiang [1 ]
Liu, Fanxin [3 ]
Cronin, Stephen B. [1 ]
Yang, Hao [1 ]
Meng, Deming [1 ]
Chen, Buyun [1 ]
Hu, Pan [1 ]
Schwartzberg, Adam M. [4 ]
Cabrini, Stefano [4 ]
Haas, Stephan [2 ]
Wu, Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Zhejiang Univ Technol, Dept Appl Phys, Hangzhou 310023, Zhejiang, Peoples R China
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
plasmonics; fluorescence; Raman spectroscopy; quantum effects; nanoimprint lithography;
D O I
10.1021/acsnano.0c01973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmon-enhanced fluorescence is demonstrated in the vicinity of metal surfaces due to strong local field enhancement. Meanwhile, fluorescence quenching is observed as the spacing between fluorophore molecules and the adjacent metal is reduced below a threshold of a few nanometers. Here, we introduce a technology, placing the fluorophore molecules in plasmonic hotspots between pairs of collapsible nanofingers with tunable gap sizes at sub-nanometer precision. Optimal gap sizes with maximum plasmon enhanced fluorescence are experimentally identified for different dielectric spacer materials. The ultrastrong local field enhancement enables simultaneous detection and characterization of sharp Raman finger-prints in the fluorescence spectra. This platform thus enables in situ monitoring of competing excitation enhancement and emission quenching processes. We systematically investigate the mechanisms behind fluorescence quenching. A quantum mechanical model is developed which explains the experimental data and will guide the future design of plasmon enhanced spectroscopy applications.
引用
收藏
页码:14769 / 14778
页数:10
相关论文
共 54 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[2]   Surface inspection by monitoring spectral shifts of localized plasmon resonances [J].
Albella, P. ;
Moreno, F. ;
Saiz, J. M. ;
Gonzalez, F. .
OPTICS EXPRESS, 2008, 16 (17) :12872-12879
[3]   ELECTRONIC-ENERGY TRANSFER AT SEMICONDUCTOR INTERFACES .1. ENERGY-TRANSFER FROM TWO-DIMENSIONAL MOLECULAR FILMS TO SI(111) [J].
ALIVISATOS, AP ;
ARNDT, MF ;
EFRIMA, S ;
WALDECK, DH ;
HARRIS, CB .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (11) :6540-6549
[4]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   On the structure of Al2O3 and photoelectron spectra of Al2O2- and Al2O3- [J].
Archibong, EF ;
St-Amant, A .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (08) :1109-1114
[6]   Metal-enhanced fluorescence solution-based sensing platform [J].
Aslan, K ;
Lakowicz, JR ;
Szmacinski, H ;
Geddes, CD .
JOURNAL OF FLUORESCENCE, 2004, 14 (06) :677-679
[7]   Metal-enhanced fluorescence from gold surfaces: Angular dependent emission [J].
Aslan, Kadir ;
Malyn, Stuart N. ;
Geddes, Chris D. .
JOURNAL OF FLUORESCENCE, 2007, 17 (01) :7-13
[8]   Plasmon-Enhanced Fluorescence Biosensors: a Review [J].
Bauch, Martin ;
Toma, Koji ;
Toma, Mana ;
Zhang, Qingwen ;
Dostalek, Jakub .
PLASMONICS, 2014, 9 (04) :781-799
[9]   Extreme nanophotonics from ultrathin metallic gaps [J].
Baumberg, Jeremy J. ;
Aizpurua, Javier ;
Mikkelsen, Maiken H. ;
Smith, David R. .
NATURE MATERIALS, 2019, 18 (07) :668-678
[10]   Improved methods for fluorescence background subtraction from Raman spectra [J].
Cadusch, P. J. ;
Hlaing, M. M. ;
Wade, S. A. ;
McArthur, S. L. ;
Stoddart, P. R. .
JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (11) :1587-1595