Na4MnV(PO4)3-rGO as Advanced cathode for aqueous and non-aqueous sodium ion batteries

被引:88
作者
Kumar, P. Ramesh [1 ]
Kheireddine, Aziz [1 ]
Nisar, Umair [2 ]
Shakoor, R. A. [2 ]
Essehli, Rachid [1 ,3 ]
Amin, Ruhul [1 ]
Belharouak, Ilias [3 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, QEERI, Doha, Qatar
[2] Qatar Univ, CAM, Doha, Qatar
[3] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37830 USA
关键词
Aqueous electrolytes; Sodium ion batteries; Na4MnV(PO4)(3); Electrochemical properties; Impedance spectroscopy; ANODE MATERIAL; RECHARGEABLE BATTERY; INTERCALATION; LI; PERFORMANCE; ELECTRODE;
D O I
10.1016/j.jpowsour.2019.04.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NASICON-type Na4MnV(PO4)(3) with reduced graphene oxide (rGO) has been synthesized by the simple sol-gel reaction and characterized by different analytical techniques. The resulted material has been explored as a cathode material for rechargeable non-aqueous and aqueous sodium-ion batteries. In non-aqueous electrolytes, the as-synthesized Na4MnV(PO4)(3)-rGO composite shows stable discharge capacity of 86 mAh g(-1) at 0.1 C and 68 mAh g(-1) at 0.2 C after 100 cycles in half-cell and full-cell configurations, respectively. In aqueous electrolytes, it delivers an initial discharge capacity of 92 inAh g(-1) at 1 C rate in half-cells and 97 mAh g(-1) at 10 C rate in full cells having NaTi2(PO4)(3)-MWCNT as the anode. Stable cycleability and high rate capabilities of Na4MnV(PO4)(3)-rGO composite can be attributed to the very strong and sustainable conductive percolation networks for both electrons and Na+ ions. The obtained results reveal that the aqueous electrolyte cell has a huge scope for gird level energy storage applications.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 46 条
[1]   Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode [J].
Amin, Ruhul ;
Belharouak, Ilias .
JOURNAL OF POWER SOURCES, 2017, 348 :318-325
[2]   Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2 [J].
Ben Yahia, Hamdi ;
Essehli, Rachid ;
Amin, Ruhul ;
Boulahya, Khalid ;
Okumura, Toyoki ;
Belharouak, Ilias .
JOURNAL OF POWER SOURCES, 2018, 382 :144-151
[3]   Prediction of Direct Methanol Fuel Cell Stack Performance Using Artificial Neural Network [J].
Biswas, M. A. Rafe ;
Robinson, Melvin D. .
JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2017, 14 (03)
[4]   A NASICON-Type Positive Electrode for Na Batteries with High Energy Density: Na4MnV(PO4)3 [J].
Chen, Fan ;
Kovrugin, Vadim M. ;
David, Renald ;
Mentre, Olivier ;
Fauth, Francois ;
Chotard, Jean-Noel ;
Masquelier, Christian .
SMALL METHODS, 2019, 3 (04)
[5]   Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes [J].
Deng, Yue ;
Eames, Christopher ;
Nguyen, Long H. B. ;
Pecher, Oliver ;
Griffith, Kent J. ;
Courty, Matthieu ;
Fleutot, Benoit ;
Chotard, Jean-Noel ;
Grey, Clare P. ;
Islam, M. Saiful ;
Masquelier, Christian .
CHEMISTRY OF MATERIALS, 2018, 30 (08) :2618-2630
[6]   Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life [J].
Dong, Xiaoli ;
Chen, Long ;
Liu, Jingyuan ;
Haller, Servane ;
Wang, Yonggang ;
Xia, Yongyao .
SCIENCE ADVANCES, 2016, 2 (01)
[7]   Unveiling the sodium intercalation properties in Na1.86□0.14Fe3(PO4)3 [J].
Essehli, R. ;
Ben Yahia, H. ;
Maher, K. ;
Sougrati, M. T. ;
Abouimrane, A. ;
Park, J. -B. ;
Sun, Y. -K. ;
Al-Maadeed, M. A. ;
Belharouak, I. .
JOURNAL OF POWER SOURCES, 2016, 324 :657-664
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]  
Hwa J. Y., 2015, ADV FUNCT MATER, V25, P3227
[10]  
Hyungsub K., 2016, ADV ENERGY MATER, V6, P1600943