Complex Pathways in Folding of Protein G Explored by Simulation and Experiment

被引:36
作者
Lapidus, Lisa J. [1 ]
Acharya, Srabasti [1 ]
Schwantes, Christian R. [2 ]
Wu, Ling [1 ]
Shukla, Diwakar [2 ,3 ]
King, Michael [1 ]
DeCamp, Stephen J. [1 ]
Pande, Vijay S. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Stanford Univ, Simbios Program, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[5] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
PHOTOCHEMICAL OXIDATION; EQUILIBRIUM ENSEMBLE; HYDROPHOBIC COLLAPSE; MICROFLUIDIC MIXER; B1; DOMAIN; DYNAMICS; INTERMEDIATE; MODEL; TRANSITION; LANDSCAPE;
D O I
10.1016/j.bpj.2014.06.037
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The B1 domain of protein G has been a classic model system of folding for decades, the subject of numerous experimental and computational studies. Most of the experimental work has focused on whether the protein folds via an intermediate, but the evidence is mostly limited to relatively slow kinetic observations with a few structural probes. In this work we observe folding on the submillisecond timescale with microfluidic mixers using a variety of probes including tryptophan fluorescence, circular dichroism, and photochemical oxidation. We find that each probe yields different kinetics and compare these observations with a Markov State Model constructed from large-scale molecular dynamics simulations and find a complex network of states that yield different kinetics for different observables. We conclude that there are many folding pathways before the final folding step and that these paths do not have large free energy barriers.
引用
收藏
页码:947 / 955
页数:9
相关论文
共 40 条
  • [1] BEAUCHAMP KA, 2011, J CHEM THEORY COMPUT, V7, P3412, DOI DOI 10.1021/ct200463m
  • [2] GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION
    BERENDSEN, HJC
    VANDERSPOEL, D
    VANDRUNEN, R
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) : 43 - 56
  • [3] Hierarchy of folding and unfolding events of protein G, CI2, and ACBP from explicit-solvent simulations
    Camilloni, Carlo
    Broglia, Ricardo A.
    Tiana, Guido
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (04)
  • [4] Direct Observation of Downhill Folding of λ-Repressor in a Microfluidic Mixer
    DeCamp, Stephen J.
    Naganathan, Athi N.
    Waldauer, Steven A.
    Bakajin, Olgica
    Lapidus, Lisa J.
    [J]. BIOPHYSICAL JOURNAL, 2009, 97 (06) : 1772 - 1777
  • [5] Fast Photochemical Oxidation of Protein Footprints Faster than Protein Unfolding
    Gau, Brian C.
    Sharp, Joshua S.
    Rempel, Don L.
    Gross, Michael L.
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (16) : 6563 - 6571
  • [6] A NOVEL, HIGHLY STABLE FOLD OF THE IMMUNOGLOBULIN BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G
    GRONENBORN, AM
    FILPULA, DR
    ESSIG, NZ
    ACHARI, A
    WHITLOW, M
    WINGFIELD, PT
    CLORE, GM
    [J]. SCIENCE, 1991, 253 (5020) : 657 - 661
  • [7] Femtomole mixer for microsecond kinetic studies of protein folding
    Hertzog, DE
    Michalet, X
    Jäger, M
    Kong, XX
    Santiago, JG
    Weiss, S
    Bakajin, O
    [J]. ANALYTICAL CHEMISTRY, 2004, 76 (24) : 7169 - 7178
  • [8] Hess B, 1997, J COMPUT CHEM, V18, P1463, DOI 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO
  • [9] 2-H
  • [10] GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
    Hess, Berk
    Kutzner, Carsten
    van der Spoel, David
    Lindahl, Erik
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (03) : 435 - 447