Integrated experimental-computational analysis of a HepaRG liver-islet microphysiological system for human-centric diabetes research

被引:6
作者
Casas, Belen [1 ,2 ]
Vilen, Liisa [1 ]
Bauer, Sophie [3 ]
Kanebratt, Kajsa P. [1 ]
Huldt, Charlotte Wennberg [4 ]
Magnusson, Lisa [4 ]
Marx, Uwe [3 ]
Andersson, Tommy B. [1 ]
Gennemark, Peter [1 ,2 ]
Cedersund, Gunnar [2 ,5 ]
机构
[1] AstraZeneca, Drug Metab & Pharmacokinet, Res & Early Dev, Cardiovasc Renal & Metab CVRM,BioPharmaceut R&D, Gothenburg, Sweden
[2] Linkoping Univ, Dept Biomed Engn, Linkoping, Sweden
[3] TissUse GmbH, Berlin, Germany
[4] AstraZeneca, Biosci, Res & Early Dev, Renal & Metab CVRM,BioPharmaceut R&D, Gothenburg, Sweden
[5] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
PANCREATIC BETA-CELLS; ON-A-CHIP; MULTI-ORGAN-CHIP; GLUCOSE-TOLERANCE; INSULIN SENSITIVITY; ANIMAL-MODELS; IN-VITRO; MASS; RAT; GLUCONEOGENESIS;
D O I
10.1371/journal.pcbi.1010587
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where HepaRG single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behaviour of the system under hypoglycemia by simulating this condition in silico, and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.
引用
收藏
页数:34
相关论文
共 97 条
[1]  
Alskär O, 2017, CPT-PHARMACOMET SYST, V6, P778, DOI 10.1002/psp4.12247
[2]   Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells [J].
Aninat, C ;
Piton, A ;
Glaise, D ;
Le Charpentier, T ;
Langouët, S ;
Morel, F ;
Guguen-Guillouzo, C ;
Guillouzo, A .
DRUG METABOLISM AND DISPOSITION, 2006, 34 (01) :75-83
[3]   A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD [J].
Ashworth, William B. ;
Davies, Nathan A. ;
Bogle, I. David L. .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)
[4]   Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform [J].
Banaeiyan, Amin A. ;
Theobald, Jannick ;
Paukstyte, Jurgita ;
Woelfl, Stefan ;
Adiels, Caroline B. ;
Goksor, Mattias .
BIOFABRICATION, 2017, 9 (01)
[5]   Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model [J].
Bauer, Sophie ;
Huldt, Charlotte Wennberg ;
Kanebratt, Kajsa P. ;
Durieux, Isabell ;
Gunne, Daniela ;
Andersson, Shalini ;
Ewart, Lorna ;
Haynes, William G. ;
Maschmeyer, Ilka ;
Winter, Annika ;
Ammala, Carina ;
Marx, Uwe ;
Andersson, Tommy B. .
SCIENTIFIC REPORTS, 2017, 7
[6]  
Becker K. L., 2001, PRINCIPLES PRACTICE
[7]   QUANTITATIVE ESTIMATION OF INSULIN SENSITIVITY [J].
BERGMAN, RN ;
IDER, YZ ;
BOWDEN, CR ;
COBELLI, C .
AMERICAN JOURNAL OF PHYSIOLOGY, 1979, 236 (06) :E667-E677
[8]   TOWARD PHYSIOLOGICAL UNDERSTANDING OF GLUCOSE-TOLERANCE - MINIMAL-MODEL APPROACH [J].
BERGMAN, RN .
DIABETES, 1989, 38 (12) :1512-1527
[9]   PHYSIOLOGIC EVALUATION OF FACTORS CONTROLLING GLUCOSE-TOLERANCE IN MAN - MEASUREMENT OF INSULIN SENSITIVITY AND BETA-CELL GLUCOSE SENSITIVITY FROM THE RESPONSE TO INTRAVENOUS GLUCOSE [J].
BERGMAN, RN ;
PHILLIPS, LS ;
COBELLI, C .
JOURNAL OF CLINICAL INVESTIGATION, 1981, 68 (06) :1456-1467
[10]   Pancreatic β-cell regeneration after 48-h glucose infusion in mildly diabetic rats is not correlated with functional improvement [J].
Bernard, C ;
Thibault, C ;
Berthault, MF ;
Magnan, C ;
Saulnier, C ;
Portha, B ;
Pralong, WF ;
Pénicaud, L ;
Ktorza, A .
DIABETES, 1998, 47 (07) :1058-1065