Reversible Conversion-Alloying of Sb2O3 as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries

被引:156
作者
Hu, Meijuan [1 ]
Jiang, Yinzhu [1 ]
Sun, Wenping [2 ]
Wang, Hongtao [1 ]
Jin, Chuanhong [1 ]
Yan, Mi [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
sodium ion battery; anode; Sb2O3; conversion; alloying; HIGH-PERFORMANCE ANODE; GRAPHENE NANOSHEETS; NA-STORAGE; LOW-COST; COMPOSITE; NANOCOMPOSITES; NANOCRYSTALS; ELECTRODES; ZNCO2O4; OXIDE;
D O I
10.1021/am505505m
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sodium ion batteries are attracting ever-increasing attention for the applications in large/grid scale energy storage systems. However, the research on novel Na-storage electrode materials is still in its infancy, and the cycling stability, specific capacity, and rate capability of the reported electrode materials cannot satisfy the demands of practical applications. Herein, a high performance Sb2O3 anode electrochemically reacted via the reversible conversion-alloying mechanism is demonstrated for the first time. The Sb2O3 anode exhibits a high capacity of 550 inAh g(-1) at 0.05 A g(-1) and 265 mAh g(-1) at 5 A A reversible capacity of 414 mAh g(-1) at 0.5 A g(-1) is achieved after 200 stable cycles. The synergistic effect involving conversion and alloying reactions promotes stabilizing the structure of the active material and accelerating the kinetics of the reaction. The mechanism may offer a well-balanced approach for sodium storage to create high capacity and cycle-stable anode materials.
引用
收藏
页码:19449 / 19455
页数:7
相关论文
共 36 条
[1]   Cu2Sb thin films as anode for Na-ion batteries [J].
Baggetto, Loic ;
Allcorn, Eric ;
Manthiram, Arumugam ;
Veith, Gabriel M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 :168-171
[2]   On the importance of reducing the energetic and material demands of electrical energy storage [J].
Barnhart, Charles J. ;
Benson, Sally M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1083-1092
[3]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[4]   One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries [J].
Deng, Yuanfu ;
Zhang, Qiumei ;
Tang, Shidi ;
Zhang, Leiting ;
Deng, Shengnan ;
Shi, Zhicong ;
Chen, Guohua .
CHEMICAL COMMUNICATIONS, 2011, 47 (24) :6828-6830
[5]   Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys [J].
Farbod, Behdokht ;
Cui, Kai ;
Kalisvaart, W. Peter ;
Kupsta, Martin ;
Zahiri, Benjamin ;
Kohandehghan, Alireza ;
Lotfabad, Elmira Memarzadeh ;
Li, Zhi ;
Luber, Erik J. ;
Mitlin, David .
ACS NANO, 2014, 8 (05) :4415-4429
[6]   α-MoO3: A high performance anode material for sodium-ion batteries [J].
Hariharan, Srirama ;
Saravanan, Kuppan ;
Balaya, Palani .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 :5-9
[7]   Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries [J].
Jian, Zelang ;
Zhao, Bin ;
Liu, Pan ;
Li, Fujun ;
Zheng, Mingbo ;
Chen, Mingwei ;
Shi, Yi ;
Zhou, Haoshen .
CHEMICAL COMMUNICATIONS, 2014, 50 (10) :1215-1217
[8]   Transition metal oxides for high performance sodium ion battery anodes [J].
Jiang, Yinzhu ;
Hu, Meijuan ;
Zhang, Dan ;
Yuan, Tianzhi ;
Sun, Wenping ;
Xu, Ben ;
Yan, Mi .
NANO ENERGY, 2014, 5 :60-66
[9]   High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries [J].
Kim, Il Tae ;
Allcorn, Eric ;
Manthiram, Arumugam .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (25) :12884-12889
[10]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721