Multi-Class Object Detection from Aerial Images Using Mask R-CNN

被引:0
|
作者
Schweitzer, David [1 ]
Agrawal, Rajeev [1 ]
机构
[1] US Army Engineer Reserch & Dev Ctr, Informat Technol Lab, Vicksburg, MS 39180 USA
来源
2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2018年
关键词
classification; deep learning; neural networks; object detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection, though gaining popularity, has largely been limited to detection from the ground or from satellite imagery. Aerial images, where the target may be obfuscated from the environmental conditions, angle-of-attack, and zoom level, pose a more significant challenge to correctly detect targets in. This paper describes the implementation of a regional convolutional neural network to locate and classify objects across several categories in complex, aerial images. Our current results show promise in detecting and classifying objects. Further adjustments to the network and data input should increase the localization and classification accuracies.
引用
收藏
页码:3470 / 3477
页数:8
相关论文
共 50 条
  • [31] DECONV R-CNN FOR SMALL OBJECT DETECTION ON REMOTE SENSING IMAGES
    Zhang, Wei
    Wang, Shihao
    Thachan, Sophanyouly
    Chen, Jingzhou
    Qian, Yuntao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2483 - 2486
  • [32] Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
    Xu, Xiangyang
    Zhao, Mian
    Shi, Peixin
    Ren, Ruiqi
    He, Xuhui
    Wei, Xiaojun
    Yang, Hao
    SENSORS, 2022, 22 (03)
  • [33] DETECTION AND CLASSIFICATION OF BRAIN TUMOURS FROM MRI IMAGES USING FASTER R-CNN
    Avsar, Ercan
    Salcin, Kerem
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2019, 13 (04): : 337 - 342
  • [34] High-Quality R-CNN Object Detection Using Multi-Path Detection Calibration Network
    Chen, Xiaoyu
    Li, Hongliang
    Wu, Qingbo
    Ngan, King Ngi
    Xu, Linfeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 715 - 727
  • [35] SS R-CNN: Self-Supervised Learning Improving Mask R-CNN for Ship Detection in Remote Sensing Images
    Jian, Ling
    Pu, Zhiqi
    Zhu, Lili
    Yao, Tiancan
    Liang, Xijun
    REMOTE SENSING, 2022, 14 (17)
  • [36] An object detection method for catenary component images based on improved Faster R-CNN
    Wu, Changdong
    He, Xu
    Wu, Yanliang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [37] The Pest and Disease Identification in the Growth of Sweet Peppers Using Faster R-CNN and Mask R-CNN
    Lin, Tu-Liang
    Chang, Hong-Yi
    Chen, Kai-Hong
    JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (02): : 605 - 614
  • [38] DETECTION OF REPLICATION FORKS IN EM IMAGES USING FASTER R-CNN
    Zhao, Wei
    Manolika, Eleni Maria
    Chaudhuri, Arnab Ray
    Smal, Ihor
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1786 - 1789
  • [39] A performance improvement of Mask R-CNN using region proposal expansion
    Degawa, Naoki
    Lu, Xin
    Kimura, Akio
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT) 2019, 2019, 11049
  • [40] DeepGhostBusters: Using Mask R-CNN to detect and mask ghosting and scattered-light artifacts from optical survey images
    Tanoglidis, D.
    Ciprijanovic, A.
    Drlica-Wagner, A.
    Nord, B.
    Wang, M. H. L. S.
    Amsellem, A. Jacob
    Downey, K.
    Jenkins, S.
    Kafkes, D.
    Zhang, Z.
    ASTRONOMY AND COMPUTING, 2022, 39