Untangling structure-function relationships in the rhomboid family of intramembrane proteases

被引:22
作者
Brooks, Cory L. [1 ]
Lemieux, M. Joanne [1 ]
机构
[1] Univ Alberta, Dept Biochem, Membrane Prot Dis Res Grp, Edmonton, AB T6G 2H7, Canada
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2013年 / 1828卷 / 12期
关键词
Rhomboid protease; Intramembrane protease; Membrane protein structure; GlpG; X-ray crystallography; Serine protease; DROSOPHILA EGF RECEPTOR; ESCHERICHIA-COLI GLPG; SUBSTRATE-SPECIFICITY; CRYSTAL-STRUCTURE; PROVIDENCIA-STUARTII; CATALYTIC MECHANISM; SERINE PROTEASES; PROTEOLYSIS; ACTIVATION; PEPTIDASE;
D O I
10.1016/j.bbamem.2013.05.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rhomboid proteases are a family of integral membrane proteins that have been implicated in critical regulatory roles in a wide array of cellular processes and signaling events. The determination of crystal structures of the prokaryotic rhomboid GlpG from Escherichia coli and Haemophilus influenzae has ushered in an era of unprecedented understanding into molecular aspects of intramembrane proteolysis by this fascinating class of protein. A combination of structural studies by X-ray crystallography, and biophysical and spectroscopic analyses, combined with traditional enzymatic and functional analysis has revealed fundamental aspects of rhomboid structure, substrate recognition and the catalytic mechanism. This review summarizes these remarkable advances by examining evidence for the proposed catalytic mechanism derived from inhibitor co-crystal structures, conflicting models of rhomboid-substrate interaction, and recent work on the structure and function of rhomboid cytosolic domains. In addition to exploring progress on aspects of rhomboid structure, areas for future research and unaddressed questions are emphasized and highlighted. This article is part of a Special Issue entitled: Intramembrane Proteases. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2862 / 2872
页数:11
相关论文
共 70 条
[1]   Mammalian EGF receptor activation by the rhomboid protease RHBDL2 [J].
Adrain, Colin ;
Strisovsky, Kvido ;
Zettl, Markus ;
Hu, Landian ;
Lemberg, Marius K. ;
Freeman, Matthew .
EMBO REPORTS, 2011, 12 (05) :421-427
[2]   Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease [J].
Akiyama, Yoshinori ;
Maegawa, Saki .
MOLECULAR MICROBIOLOGY, 2007, 64 (04) :1028-1037
[3]   Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate [J].
Baker, Rosanna P. ;
Young, Keith ;
Feng, Liang ;
Shi, Yigong ;
Urban, Sinisa .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (20) :8257-8262
[4]  
Baker RP, 2012, NAT CHEM BIOL, V8, P759, DOI [10.1038/nchembio.1021, 10.1038/NCHEMBIO.1021]
[5]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[6]   Structural basis for intramembrane proteolysis by rhomboid serine proteases [J].
Ben-Shem, Adam ;
Fass, Deborah ;
Bibi, Eitan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (02) :462-466
[7]   The tortuous story of Asp ... His ... Ser: structural analysis of alpha-chymotrypsin [J].
Blow, DM .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (10) :405-408
[8]   Rhomboid Protease Dynamics and Lipid Interactions [J].
Bondar, Ana-Nicoleta ;
del Val, Coral ;
White, Stephen H. .
STRUCTURE, 2009, 17 (03) :395-405
[9]   The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site [J].
Botos, I ;
Melnikov, EE ;
Cherry, S ;
Tropea, JE ;
Khalatova, AG ;
Rasulova, F ;
Dauter, Z ;
Maurizi, MR ;
Rotanova, TV ;
Wlodawer, A ;
Gustchina, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (09) :8140-8148
[10]   Insights into Substrate Gating in H-influenzae Rhomboid [J].
Brooks, Cory L. ;
Lazareno-Saez, Christelle ;
Lamoureux, Jason S. ;
Mak, Michelle W. ;
Lemieux, M. Joanne .
JOURNAL OF MOLECULAR BIOLOGY, 2011, 407 (05) :687-697