Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra

被引:11
作者
Ambartsumyan, Ilona [1 ]
Khattatov, Eldar [1 ]
Lee, Jeonghun J. [2 ]
Yotov, Ivan [3 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, 201 East 24th St, Austin, TX 78712 USA
[2] Baylor Univ, Dept Math, One Bear Pl 97328, Waco, TX 76798 USA
[3] Univ Pittsburgh, Dept Math, 301 Thackeray Hall, Pittsburgh, PA 15260 USA
关键词
Mixed finite element methods; multipoint flux; high order methods; finite volume schemes; ELLIPTIC PROBLEMS; VOLUME METHODS; CONVERGENCE; APPROXIMATIONS; SUPERCONVERGENCE; DISCRETIZATION; GRIDS; FLOW;
D O I
10.1142/S0218202519500167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop higher order multipoint flux mixed finite element (MFMFE) methods for solving elliptic problems on quadrilateral and hexahedral grids that reduce to cell-based pressure systems. The methods are based on a new family of mixed finite elements, which are enhanced Raviart-Thomas spaces with bubbles that are curls of specially chosen polynomials. The velocity degrees of freedom of the new spaces can be associated with the points of tensor-product Gauss-Lobatto quadrature rules, which allows for local velocity elimination and leads to a symmetric and positive definite cell-based system for the pressures. We prove optimal kth order convergence for the velocity and pressure in their natural norms, as well as (k + 1)st order superconvergence for the pressure at the Gauss points. Moreover, local postprocessing gives a pressure that is superconvergent of order (k + 1) in the full L-2-norm. Numerical results illustrating the validity of our theoretical results are included.
引用
收藏
页码:1037 / 1077
页数:41
相关论文
共 48 条
[1]   Convergence of a symmetric MPFA method on quadrilateral grids [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Klausen, R. A. ;
Wheeler, M. F. ;
Yotov, I. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (04) :333-345
[2]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[3]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[4]  
Ambartsumyan I., HIGHER ORDER MULTIPO
[5]  
[Anonymous], 1964, Handbook of Mathematical Function with Formulas, Graphs and Mathematical Tables
[6]  
Arbogast T, 1998, SIAM J SCI COMPUT, V19, P404, DOI 10.1137/S1064827594264545
[7]   Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences [J].
Arbogast, T ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :828-852
[8]   The deal. II library, version 8.5 [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Davydov, Denis ;
Heister, Timo ;
Heltai, Luca ;
Kronbichler, Martin ;
Maier, Matthias ;
Pelteret, Jean-Paul ;
Turcksin, Bruno ;
Wells, David .
JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (03) :137-145
[9]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[10]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32