Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration

被引:434
作者
Zhang, Jian [1 ,2 ]
Qin, Ziyu [1 ]
Zeng, Dawen [1 ,2 ]
Xie, Changsheng [1 ]
机构
[1] HUST, State Key Lab Mat Proc & Die Mould Technol, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[2] Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
NO2 SENSING PROPERTIES; HIGH-THROUGHPUT; THIN-FILM; GRAIN-SIZE; SELECTIVE DETECTION; SNO2; NANOCRYSTALS; CARBON NANOTUBES; HIGH-SENSITIVITY; RATIONAL DESIGN; INTERFACE BONDS;
D O I
10.1039/c6cp07799d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-oxide-semiconductor (MOS) based gas sensors have been considered a promising candidate for gas detection over the past few years. However, the sensing properties of MOS-based gas sensors also need to be further enhanced to satisfy the higher requirements for specific applications, such as medical diagnosis based on human breath, gas detection in harsh environments, etc. In these fields, excellent selectivity, low power consumption, a fast response/ recovery rate, low humidity dependence and a low limit of detection concentration should be fulfilled simultaneously, which pose great challenges to the MOS-based gas sensors. Recently, in order to improve the sensing performances of MOS-based gas sensors, more and more researchers have carried out extensive research from theory to practice. For a similar purpose, on the basis of the whole fabrication process of gas sensors, this review gives a presentation of the important role of screening and the recent developments in high throughput screening. Subsequently, together with the sensing mechanism, the factors influencing the sensing properties of MOSs involved in material preparation processes were also discussed in detail. It was concluded that the sensing properties of MOSs not only depend on the morphological structure (particle size, morphology, pore size, etc.), but also rely on the defect structure and heterointerface structure (grain boundaries, heterointerfaces, defect concentrations, etc.). Therefore, the material-sensor integration was also introduced to maintain the structural stability in the sensor fabrication process, ensuring the sensing stability of MOS-based gas sensors. Finally, the perspectives of the MOS-based gas sensors in the aspects of fundamental research and the improvements in the sensing properties are pointed out.
引用
收藏
页码:6313 / 6329
页数:17
相关论文
共 151 条
[1]   Metal-Organic Frameworks for Sensing Applications in the Gas Phase [J].
Achmann, Sabine ;
Hagen, Gunter ;
Kita, Jaroslaw ;
Malkowsky, Itamar M. ;
Kiener, Christoph ;
Moos, Ralf .
SENSORS, 2009, 9 (03) :1574-1589
[2]   Gas sensing properties of defect-controlled ZnO-nanowire gas sensor [J].
Ahn, M. -W. ;
Park, K. -S. ;
Heo, J. -H. ;
Park, J. -G. ;
Kim, D. -W. ;
Choi, K. J. ;
Lee, J. -H. ;
Hong, S. -H. .
APPLIED PHYSICS LETTERS, 2008, 93 (26)
[3]   AUTOMATIC COMPUTER PROGRAM FOR THE REDUCTION OF ROUTINE EMISSION SPECTROGRAPHIC DATA [J].
ANDERSON, FW ;
MOSER, JH .
ANALYTICAL CHEMISTRY, 1958, 30 (05) :879-881
[4]   Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review [J].
Arafat, M. M. ;
Dinan, B. ;
Akbar, Sheikh A. ;
Haseeb, A. S. M. A. .
SENSORS, 2012, 12 (06) :7207-7258
[5]   Preparation, characterization of WO3-SnO2 nanocomposites and their sensing properties for NO2 [J].
Bai Shouli ;
Li Dianqing ;
Han Dongmei ;
Luo Ruixian ;
Chen Aifan ;
Liu, Chung Chiun .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 150 (02) :749-755
[6]   High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors [J].
Banerjee, Swagata ;
Kelly, Caroline ;
Kerry, Joseph P. ;
Papkovsky, Dmitri B. .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2016, 50 :85-102
[7]   Metal oxide-based gas sensor research: How to? [J].
Barsan, N. ;
Koziej, D. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :18-35
[8]   Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds [J].
Barsan, N. ;
Huebner, M. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02) :510-517
[9]   Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors [J].
Barsan, N. ;
Simion, C. ;
Heine, T. ;
Pokhrel, S. ;
Weimar, U. .
JOURNAL OF ELECTROCERAMICS, 2010, 25 (01) :11-19
[10]  
BIRINA GA, 1974, IND LAB-USSR+, V40, P855