To divide or not to divide: A key role of Rim15 in calorie-restricted yeast cultures

被引:22
作者
Bisschops, Markus M. M. [1 ,2 ]
Zwartjens, Priscilla [1 ,2 ]
Keuter, Sebastiaan G. F. [1 ,2 ]
Pronk, Jack T. [1 ,2 ]
Daran-Lapujade, Pascale [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Kluyver Ctr Genom Ind Fermentat, NL-2600 GA Delft, Netherlands
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2014年 / 1843卷 / 05期
关键词
Saccharomyces cerevisiae; Rim15; Cell cycle; Calorie restriction; Retentostat; Robustness; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTIONAL RESPONSES; STATIONARY-PHASE; STRESS-RESPONSE; PROTEIN-KINASE; CELLULAR-RESPONSES; SIGNALING PATHWAYS; REGULATED GENES; DIAUXIC SHIFT; MODEL SYSTEM;
D O I
10.1016/j.bbamcr.2014.01.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The PAS kinase Rim15 is proposed to integrate signals from different nutrient-sensing pathways and to control transcriptional reprogramming of Saccharomyces cerevisiae upon nutrient depletion. Despite this proposed role, previous transcriptome analyses of rim15 mutants solely focused on growing cultures. In the present work, retentostat cultivation enabled analysis of the role of Rim15 under severely calorie-restricted, virtually non-growing conditions. Under these conditions, deletion of RIM15 affected transcription of over 10-fold more genes than in growing cultures. Transcriptional responses, metabolic rates and cellular morphology indicated a key role of Rim15 in controlled cell-cycle arrest upon nutrient depletion. Moreover, deletion of rim15 reduced heat-shock tolerance in non-growing, but not in growing cultures. The failure of rim15 cells to adapt to calorie restriction by entering a robust post-mitotic state resembles cancer cell physiology and shows that retentostat cultivation of yeast strains can provide relevant models for healthy post-mitotic and transformed human cells. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:1020 / 1030
页数:11
相关论文
共 69 条
  • [1] A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters
    Badis, Gwenael
    Chan, Esther T.
    van Bakel, Harm
    Pena-Castillo, Lourdes
    Tillo, Desiree
    Tsui, Kyle
    Carlson, Clayton D.
    Gossett, Andrea J.
    Hasinoff, Michael J.
    Warren, Christopher L.
    Gebbia, Marinella
    Talukder, Shaheynoor
    Yang, Ally
    Mnaimneh, Sanie
    Terterov, Dimitri
    Coburn, David
    Yeo, Ai Li
    Yeo, Zhen Xuan
    Clarke, Neil D.
    Lieb, Jason D.
    Ansari, Aseem Z.
    Nislow, Corey
    Hughes, Timothy R.
    [J]. MOLECULAR CELL, 2008, 32 (06) : 878 - 887
  • [2] Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures
    Boender, Leonie G. M.
    van Maris, Antonius J. A.
    de Hulster, Erik A. F.
    Almering, Marinka J. H.
    van der Klei, Ida J.
    Veenhuis, Marten
    de Winde, Johannes H.
    Pronk, Jack T.
    Daran-Lapujade, Pascale
    [J]. FEMS YEAST RESEARCH, 2011, 11 (08) : 603 - 620
  • [3] Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states
    Boender, Leonie G. M.
    Almering, Marinka J. H.
    Dijk, Madelon
    van Maris, Antonius J. A.
    de Winde, Johannes H.
    Pronk, Jack T.
    Daran-Lapujade, Pascale
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2011, 1813 (12): : 2133 - 2144
  • [4] Quantitative Physiology of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates
    Boender, Leonie G. M.
    de Hulster, Erik A. F.
    van Maris, Antonius J. A.
    Daran-Lapujade, Pascale A. S.
    Pronk, Jack T.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (17) : 5607 - 5614
  • [5] The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
    Boer, VM
    de Winde, JH
    Pronk, JT
    Piper, MDW
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) : 3265 - 3274
  • [6] INTERACTIONS BETWEEN DNA-BOUND TRIMERS OF THE YEAST HEAT-SHOCK FACTOR
    BONNER, JJ
    BALLOU, C
    FACKENTHAL, DL
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) : 501 - 508
  • [7] REGULATION OF A YEAST HSP70 GENE BY A CAMP RESPONSIVE TRANSCRIPTIONAL CONTROL ELEMENT
    BOORSTEIN, WR
    CRAIG, EA
    [J]. EMBO JOURNAL, 1990, 9 (08) : 2543 - 2553
  • [8] Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast
    Brauer, Matthew J.
    Huttenhower, Curtis
    Airoldi, Edoardo M.
    Rosenstein, Rachel
    Matese, John C.
    Gresham, David
    Boer, Viktor M.
    Troyanskaya, Olga G.
    Botstein, David
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (01) : 352 - 367
  • [9] Breitenbach M., 2012, Aging Research in Yeast
  • [10] Cameroni E, 2004, CELL CYCLE, V3, P462