A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm

被引:3
作者
Dziwinski, Piotr [1 ]
Bartczuk, Lukasz [1 ]
Goetzen, Piotr [2 ,3 ]
机构
[1] Czestochowa Tech Univ, Inst Computat Intelligence, Czestochowa, Poland
[2] Univ Social Sci, Informat Technol Inst, PL-90113 Lodz, Poland
[3] Clark Univ, Worcester, MA 01610 USA
来源
ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I | 2019年 / 11508卷
关键词
Hybrid algorithm; Particle swarm optimization; Evolutionary algorithm; GENETIC ALGORITHM; SYSTEMS;
D O I
10.1007/978-3-030-20912-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) has proved fast convergence in many optimization problems but still has the main drawback falling in a local minimum. This paper presents a new Hybrid Particle Swarm Optimization and Evolutionary algorithm (HPSO-E) to solve this problem by introducing a new population of children particles obtained by applying a mutation and crossover operators taken from the evolutionary algorithm. In this way, we connect the best properties of the algorithms: fast convergence of the PSO and ability to global search introduced by the evolutionary algorithm. The novel hybrid algorithm shows sufficient convergence for unimodal benchmark function and excellent convergence for selected hard multimodal benchmark functions.
引用
收藏
页码:432 / 444
页数:13
相关论文
共 51 条
[41]   The particle swarm optimization algorithm: convergence analysis and parameter selection [J].
Trelea, IC .
INFORMATION PROCESSING LETTERS, 2003, 85 (06) :317-325
[42]   A comparative study on particle swarm optimization for optimal steady-state performance of power systems [J].
Vlachogiannis, John G. ;
Lee, Kwang Y. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (04) :1718-1728
[43]   Particle swarm optimization using dynamic tournament topology [J].
Wang, Lin ;
Yang, Bo ;
Orchard, Jeff .
APPLIED SOFT COMPUTING, 2016, 48 :584-596
[44]  
Yang SQ, 2017, J ARTIF INTELL SOFT, V7, P87, DOI 10.1515/jaiscr-2017-0006
[45]  
Yuhui Shi, 1998, Evolutionary Programming VII. 7th International Conference, EP98. Proceedings, P591, DOI 10.1007/BFb0040810
[46]   A New Approach to the Dynamic Signature Verification Aimed at Minimizing the Number of Global Features [J].
Zalasinski, Marcin ;
Cpalka, Krzysztof ;
Hayashi, Yoichi .
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, (ICAISC 2016), PT II, 2016, 9693 :218-231
[47]  
Zalasinski M, 2016, LECT NOTES ARTIF INT, V9693, P232, DOI [10.1007/978-3-319-39384-1_21, 10.1007/978-3-319-39384-12_1]
[48]   New Algorithm for On-line Signature Verification Using Characteristic Hybrid Partitions [J].
Zalasinski, Marcin ;
Cpalka, Krzysztof .
INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT IV, 2016, 432 :147-157
[49]   A New Method for the Dynamic Signature Verification Based on the Stable Partitions of the Signature [J].
Zalasinski, Marcin ;
Cpalka, Krzysztof ;
Er, Meng Joo .
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II (ICAISC 2015), 2015, 9120 :161-174
[50]  
Zalasinski M, 2013, LECT NOTES ARTIF INT, V7894, P493, DOI 10.1007/978-3-642-38658-9_44