A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm

被引:3
作者
Dziwinski, Piotr [1 ]
Bartczuk, Lukasz [1 ]
Goetzen, Piotr [2 ,3 ]
机构
[1] Czestochowa Tech Univ, Inst Computat Intelligence, Czestochowa, Poland
[2] Univ Social Sci, Informat Technol Inst, PL-90113 Lodz, Poland
[3] Clark Univ, Worcester, MA 01610 USA
来源
ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I | 2019年 / 11508卷
关键词
Hybrid algorithm; Particle swarm optimization; Evolutionary algorithm; GENETIC ALGORITHM; SYSTEMS;
D O I
10.1007/978-3-030-20912-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) has proved fast convergence in many optimization problems but still has the main drawback falling in a local minimum. This paper presents a new Hybrid Particle Swarm Optimization and Evolutionary algorithm (HPSO-E) to solve this problem by introducing a new population of children particles obtained by applying a mutation and crossover operators taken from the evolutionary algorithm. In this way, we connect the best properties of the algorithms: fast convergence of the PSO and ability to global search introduced by the evolutionary algorithm. The novel hybrid algorithm shows sufficient convergence for unimodal benchmark function and excellent convergence for selected hard multimodal benchmark functions.
引用
收藏
页码:432 / 444
页数:13
相关论文
共 51 条
[1]   LEARNING STRUCTURES OF CONCEPTUAL MODELS FROM OBSERVED DYNAMICS USING EVOLUTIONARY ECHO STATE NETWORKS [J].
Abdelbari, Hassan ;
Shafi, Kamran .
JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2018, 8 (02) :133-154
[2]   Cooperative learning for radial basis function networks using particle swarm optimization [J].
Alexandridis, Alex ;
Chondrodima, Eva ;
Sarimveis, Haralambos .
APPLIED SOFT COMPUTING, 2016, 49 :485-497
[3]   A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems [J].
Ali, Ahmed F. ;
Tawhid, Mohamed A. .
AIN SHAMS ENGINEERING JOURNAL, 2017, 8 (02) :191-206
[4]   A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems [J].
Alsumait, J. S. ;
Sykulski, J. K. ;
Al-Othman, A. K. .
APPLIED ENERGY, 2010, 87 (05) :1773-1781
[5]  
[Anonymous], 2018, 2018 IEEE INT C FUZZ
[6]  
[Anonymous], P 9 INT C NEUR INF P
[7]   New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique [J].
Behrang, M. A. ;
Assareh, E. ;
Noghrehabadi, A. R. ;
Ghanbarzadeh, A. .
ENERGY, 2011, 36 (05) :3036-3049
[8]   AMPSO: A New Particle Swarm Method for Nearest Neighborhood Classification [J].
Cervantes, Alejandro ;
Maria Galvan, Ines ;
Isasi, Pedro .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (05) :1082-1091
[9]  
Cpalka K, 2005, IEEE IJCNN, P1764
[10]   A new method for designing and reduction of neuro-fuzzy systems [J].
Cpalka, Krzysztof ;
Rutkowski, Leszek .
2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, :1851-+