Anderson transition driven by running fractal dimensions in a fractal-shaped structure

被引:15
|
作者
Ugajin, R [1 ]
Hirata, S [1 ]
Kuroki, Y [1 ]
机构
[1] Sony Corp, Frontier Sci Labs, Hodogaya Ku, Yokohama, Kanagawa 2400005, Japan
来源
PHYSICA A | 2000年 / 278卷 / 3-4期
关键词
Anderson transition; spectral statistics; quantum chaos; fractal dimension;
D O I
10.1016/S0378-4371(99)00601-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anderson transition in a fractal-shaped structure is driven by running fractal dimension from two to three. We analyzed the spectral statistics of a quantum particle confined in a fractal-shaped structure generated using the dielectric breakdown model in three dimensions. When the fractal dimension is almost three, the spectral statistics of low-energy states are similar to those of a Gaussian orthogonal ensemble. As the fractal dimension decreases to two, the spectral statistics become Poissonian. This indicates the onset of quantum localization in the fractal-shaped structure, so the Anderson transition takes place as the fractal dimension changes. The effects of introducing random potentials are also analyzed. When a random magnetic field affects quantum states extended over our fractal-shaped structure, the spectral statistics are similar to those of a Gaussian unitary ensemble. On the other hand, a random on-site potential encourages quantum localization in our fractal-shaped structure. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [1] Ferromagnetic and Mott transitions modulated by varying fractal dimensions in fractal-shaped nanostructures
    Ugajin, R
    Hirata, S
    Mori, Y
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (14): : 2025 - 2044
  • [2] Distribution of fractal dimensions at the Anderson transition
    Parshin, DA
    Schober, HR
    PHYSICAL REVIEW LETTERS, 1999, 83 (22) : 4590 - 4593
  • [3] Radar backscattering computations for fractal-shaped snowflakes
    Ishimoto, Hiroshi
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2008, 86 (03) : 459 - 469
  • [4] Metallized Foams for Fractal-Shaped Microstrip Antennas
    Anguera, Jaume
    Daniel, Jean-Pierre
    Borja, Carmen
    Mumbru, Josep
    Puente, Carles
    Leduc, Tiphaine
    Laeveren, Nancy
    Van Roy, Peter
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2008, 50 (06) : 20 - 38
  • [5] Composite nanomaterials based on fractal-shaped structures
    Ugajin, R
    PHYSICS LETTERS A, 2000, 277 (4-5) : 267 - 272
  • [6] Fractal-shaped antennas and their application to GSM 900/1800
    Puente, C
    Anguera, J
    Borja, C
    JOURNAL OF THE INSTITUTION OF BRITISH TELECOMMUNICATIONS ENGINEERS, 2001, 2 : 92 - 95
  • [7] HYBRID DESIGN OF A FRACTAL-SHAPED GSM/UMTS ANTENNA
    Lizzi, L.
    Oliveri, G.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2010, 24 (5-6) : 707 - 719
  • [8] Fractal-Shaped Metamaterial Absorbers for Multireflections Mitigation in the UHF Band
    Venneri, Francesca
    Costanzo, Sandra
    Di Massa, Giuseppe
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (02): : 255 - 258
  • [9] Compact antenna array comprising fractal-shaped microstrip radiators
    Bekasiewicz, Adrian
    Kurgan, Piotr
    Duraj, Piotr
    Kitlinski, Marek
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (10): : 98 - 100
  • [10] Bandwidth Enhancement of a Wide Slot Using Fractal-Shaped Sierpinski
    Sung, Y. J.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (08) : 3076 - 3079