Complex equiangular cyclic frames and erasures

被引:32
作者
Kalra, Deepti [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
frames; cyclic; equiangular; erasures; residues; Gauss sums;
D O I
10.1016/j.laa.2006.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive various interesting properties of complex equiangular cyclic frames for many pairs (n, k) using Gauss sums and number theory. We further use these results to study the random and burst errors of some special classes of complex equiangular cyclic (n, k) frames. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:373 / 399
页数:27
相关论文
共 8 条
[1]   Frames, graphs and erasures [J].
Bodmann, BG ;
Paulsen, VI .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 :118-146
[2]   Equal-norm tight frames with erasures [J].
Casazza, PG ;
Kovacevic, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :387-430
[3]  
Dence T. P., 1995, MO J MATH SCI, V7, P24, DOI [10.35834/1995/0701024, DOI 10.35834/1995/0701024]
[4]  
Hall M., 1986, COMBINATORIAL THEORY
[5]   Optimal frames for erasures [J].
Holmes, RB ;
Paulsen, VI .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 (1-3) :31-51
[6]   Grassmannian frames with applications to coding and communication [J].
Strohmer, T ;
Heath, RW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (03) :257-275
[7]   Designing structured tight frames via an alternating projection method [J].
Tropp, JA ;
Dhillon, IS ;
Heath, RW ;
Strohmer, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :188-209
[8]   Achieving the Welch bound with difference sets [J].
Xia, PF ;
Zhou, SL ;
Giannakis, GB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (05) :1900-1907