The octahedron recurrence and gln crystals

被引:19
作者
Henriques, Andre
Kamnitzer, Joel
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
crystals; octahedron recurrence; hives; coboundary category;
D O I
10.1016/j.aim.2005.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the hive model of gl(n) tensor products, following Knutson, Tao, and Woodward. We define a coboundary category where the tensor product is given by hives and where the associator and commutor are defined using a modified octahedron recurrence. We then prove that this category is equivalent to the category of crystals for the Lie algebra 91, The proof of this equivalence uses a new connection between the octahedron recurrence and the Jeu de Taquin and Schutzenberger involution procedures on Young tableaux. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 249
页数:39
相关论文
共 17 条
[1]  
DANILOV VI, 2004, BICRYSTALS GLV GLW D
[2]  
Fulton W., 1997, LONDON MATH SOC STUD, V35
[3]   DUAL EQUIVALENCE WITH APPLICATIONS, INCLUDING A CONJECTURE OF PROCTOR [J].
HAIMAN, MD .
DISCRETE MATHEMATICS, 1992, 99 (1-3) :79-113
[4]  
HENRIQUES A, IN PRESS DUKE MATH J
[5]  
HENRIQUES A, UNPUB COBOUNDARY CAT
[6]  
Joseph A., 1995, QUANTUM GROUPS THEIR
[7]   CRYSTAL GRAPHS FOR REPRESENTATIONS OF THE Q-ANALOG OF CLASSICAL LIE-ALGEBRAS [J].
KASHIWARA, M ;
NAKASHIMA, T .
JOURNAL OF ALGEBRA, 1994, 165 (02) :295-345
[8]  
KNUTSON A, 2004, ELECT J COMBIN, V11
[9]  
LASCOUX A, 1990, IMA V MATH, V19, P125
[10]  
LASCOUX A, 1995, LETT MATH PHYS, V35, P374