Digital Artificial Neural Network Implementation on a FPGA for Data Classification

被引:7
|
作者
Morales, C. [1 ]
Flores, U. [1 ]
Adam, M. [2 ]
Diaz, M. [3 ]
Caballero, J. A. [3 ]
Criado, D. [3 ]
Pavoni, S. [4 ]
机构
[1] Univ Politecn Estado Morelos, Jiutepec, Morelos, Mexico
[2] Ctr Nacl Invest & Desarrollo Tecnol, Cuernavaca, Morelos, Mexico
[3] Inst Super Politecn Jose Antonio Echeverria, Havana, Cuba
[4] Inst Super Politecn Jose Antonio Echeverria, Ctr Invest Microelect, Havana, Cuba
关键词
Artificial Neural Network; MOSFET; Data Classification; Multilayer Perceptron;
D O I
10.1109/TLA.2015.7387224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the implementation of a Digital Artificial Neural Network (ANN) of type Multilayer Perceptron trained for data classification corresponding to the output characteristic of a transistor MOSFET. The ANN digital was build and training with an adequate number of neurons and samples for achieve an approximate of 90% correct data classification of the transistor MOSFET.
引用
收藏
页码:3216 / 3220
页数:5
相关论文
共 50 条
  • [31] A Modularization Hardware Implementation Approach for Artificial Neural Network
    Wang, Tong
    Wang, Lianming
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 670 - 675
  • [32] An Artificial Neural Network Approach for Electroencephalographic Signal Classification towards Brain-Computer Interface Implementation
    Nguyen The Hoang Anh
    Tran Huy Hoang
    Do Tien Dung
    Vu Tat Thang
    Quyen Bui, T. T.
    2016 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES, RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2016, : 205 - 210
  • [33] Implementation of Digital Logic Circuit in Artificial Neural Network with Floating Point Arithmetic using Verilog HDL
    Jangid, Aisha
    Kabra, Shraddha
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 270 - 275
  • [34] Classification of heart sounds using an artificial neural network
    Ölmez, T
    Dokur, Z
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 617 - 629
  • [35] Image Classification of Canaries Using Artificial Neural Network
    Yanuki, Bagus
    Rahman, Aviv Yuniar
    Istiadi
    2021 5TH INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2021), 2021,
  • [36] Ripeness Classification of Bananas Using an Artificial Neural Network
    Fatma M. A. Mazen
    Ahmed A. Nashat
    Arabian Journal for Science and Engineering, 2019, 44 : 6901 - 6910
  • [37] Classification of emergency phone conversations with artificial neural network
    Balcerek, Julian
    Pawlowski, Pawel
    Dabrowski, Adam
    2017 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA 2017), 2017, : 343 - 348
  • [38] Classification of Breast Abnormalities Using Artificial Neural Network
    Zaman, Nur Atiqah Kamarul
    Rahman, Wan Eny Zarina Wan Abdul
    Jumaat, Abdul Kadir
    Yasiran, Siti Salmah
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [39] Artificial neural network ensemble for land cover classification
    He, Lingmin
    Kong, Fansheng
    Shen, Zhangquan
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 623 - 623
  • [40] Classification of Galaxy Morphologies using Artificial Neural Network
    Biswas, Manish
    Adlak, Ritesh
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,