Generalized vector equilibrium problems on Hadamard manifolds

被引:1
作者
Jana, Shreyasi [1 ]
Nahak, Chandal [1 ]
Ionescu, Cristiana [2 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[2] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 03期
关键词
Hadamard manifold; variational inequality; equilibrium problem; KKM mapping; VARIATIONAL-INEQUALITIES; MONOTONE; EXISTENCE; FIELDS;
D O I
10.22436/jnsa.009.03.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study several types of Generalized Vector Equilibrium Problems (GVEP) on Hadamard manifolds. We prove sufficient conditions under which the solution set of (GVEP) 's is nonempty. As an application, we prove existence theorems for the system of generalized vector variational inequality problems and the system of generalized Pareto optimization problems. (C) 2016 All rights reserved.
引用
收藏
页码:1402 / 1409
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 1999, METRIC SPACES NONPOS
[2]  
[Anonymous], 1994, CONVEX FUNCTIONS OPT
[3]   An existence result for the generalized vector equilibrium problem [J].
Ansari, QH ;
Yao, JC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (08) :53-56
[4]   Parametric approach to multitime multiobjective fractional variational problems under (F,ρ)-convexity [J].
Antczak, Tadeusz ;
Pitea, Ariana .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2016, 37 (05) :831-847
[5]  
BATISTA EEA, 2015, AN EXISTENCE RESULT, V167, P550
[6]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[7]  
Blum E., 1994, Math. student, V63, P123
[8]   Equilibrium problems in Hadamard manifolds [J].
Colao, Vittorio ;
Lopez, Genaro ;
Marino, Giuseppe ;
Martin-Marquez, Victoria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :61-77
[9]  
Cruz Neto J. X., CONVEXITY SPECIAL FU
[10]   Convex- and monotone-transformable mathematical programming problems and a proximal-like point method [J].
Da Cruz Neto, J. X. ;
Ferreira, O. P. ;
Perez, L. R. Lucambio ;
Nemeth, S. Z. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) :53-69