Polynomial identities for orbit numbers of general linear and unitary groups over finite fields

被引:0
作者
Fleischmann, P
机构
[1] Inst. für Experimentelle Math., Universität Essen
关键词
D O I
10.1016/S0024-3795(96)00740-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(n) be the set of all partitions of n epsilon N and denote an element c = 1(c1)2(c2)...n(cn) epsilon P(n) by the sequence (c(1), c(2),...c(n)) epsilon N-0(n) with Sigma(i=1,...,n)c(i) . i = n. For n epsilon N and epsilon epsilon {0, +/- 1} We define [GRAPHICS] Then F-n,F-e(q) equals the number of conjugacy classes in GL(n)(q) or U-n(q(2)) for epsilon = 1 or -1 respectively or the number of adjoint GL(n)(q)- or U-n(q(2))-orbits on their finite Lie algebras, if epsilon = 0. In this paper we give a unified proof of this together with a polynomial identity for F-n,F-e(X), involving partitions and 'multipartitions' of n. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:341 / 362
页数:22
相关论文
共 5 条
[1]  
BOREL A, 1991, LINEAR ALGEBRAIC GRO
[2]   NUMBERS OF CONJUGACY CLASSES IN SOME FINITE CLASSICAL-GROUPS [J].
MACDONALD, IG .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (01) :23-48
[3]  
SPRINGER TA, 1983, LINEAR ALGEBRAIC GRO
[4]  
Wall G. E., 1980, Bulletin of the Australian Mathematical Society, V22, P339, DOI 10.1017/S0004972700006675
[5]  
WALL GE, 1963, J AUSTRAL MATH SOC, V3, P1