Characterizing the many-body localization transition by the dynamics of diagonal entropy

被引:12
作者
Sun, Zheng-Hang [1 ,2 ]
Cui, Jian [3 ]
Fan, Heng [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[3] Beihang Univ, Minist Educ, Dept Phys, Key Lab Micronano Measurement Manipulat & Phys, Beijing 100191, Peoples R China
[4] CAS Cent Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
基金
国家重点研发计划;
关键词
QUANTUM; MODEL;
D O I
10.1103/PhysRevResearch.2.013163
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the dynamics of diagonal entropy (DE), we provide a nonequilibrium method to study the properties of many-body localization (MBL) transition including the critical point and the universality class. By systematically studying the dynamical behaviors of DE in the fully explored Heisenberg spin chain with quasiperiodic field, we demonstrate the DE method can efficiently detect the transition point W-c between the thermal and MBL phase. We further use the method to study the MBL transition in the isotropic XX-ladder model, showing W-c similar to 8.05. We also widely explore the XX-ladder model with various parameters. Our results indicate that the MBL transition in the Heisenberg model and the XX-ladder model belong to distinct universality classes according to the obvious difference between the scaling exponents. These results can be tested in ongoing quantum simulation experiments with larger qubit numbers, since the diagonal elements of the density matrix directly yielding the DE can be easily obtained by repeatedly running single-shot measurements.
引用
收藏
页数:10
相关论文
共 71 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Recent progress in many-body localization [J].
Abanin, Dmitry A. ;
Papic, Zlatko .
ANNALEN DER PHYSIK, 2017, 529 (07)
[3]   Many-body localization and quantum thermalization [J].
Altman, Ehud .
NATURE PHYSICS, 2018, 14 (10) :979-983
[4]   CALCULATION OF THE SINGLET-TRIPLET GAP OF THE ANTIFERROMAGNETIC HEISENBERG-MODEL ON A LADDER [J].
AZZOUZ, M ;
CHEN, L ;
MOUKOURI, S .
PHYSICAL REVIEW B, 1994, 50 (09) :6233-6237
[5]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[6]   EXCITATION SPECTRUM OF HEISENBERG SPIN LADDERS [J].
BARNES, T ;
DAGOTTO, E ;
RIERA, J ;
SWANSON, ES .
PHYSICAL REVIEW B, 1993, 47 (06) :3196-3203
[7]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[8]   Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds [J].
Batchelor, M. T. ;
Guan, X. W. ;
Oelkers, N. ;
Tsuboi, Z. .
ADVANCES IN PHYSICS, 2007, 56 (03) :465-543
[9]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[10]   Many-body localization and mobility edge in a disordered spin-1/2 Heisenberg ladder [J].
Baygan, Elliott ;
Lim, S. P. ;
Sheng, D. N. .
PHYSICAL REVIEW B, 2015, 92 (19)