Research and Implement Embedded Artificial Intelligence in Low-Power Water Meter Reading Device

被引:0
作者
Hoan Nguyen Duc [1 ]
Thao Nguyen Manh [1 ]
Huy Trinh Le [1 ]
Ferrero, Fabien [2 ]
机构
[1] Vietnam Natl Univ VNUHCM UIT, Univ Informat Technol, Ho Chi Minh City, Vietnam
[2] Univ Cote dAzur, CNRS, LEAT, Sophia Antipolis, France
来源
2021 INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS (ATC 2021) | 2021年
关键词
LoRaWAN; Water Meter; Deep Learning; Automatic Meter Reading; Low Power; Image Processing In C/C plus; ROBUST;
D O I
10.1109/ATC52653.2021.9598331
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a system using artificial intelligence deployed on ESP32-Cam to conduct OCR on water meter readings. Data transmission through LoRa technology ensures low-power consumption and long-range data communication. The accuracy of digit classification tasks reaches up to 98%. The lowest current consumption in active and sleep mode is 33.5 mA and 0.2 uA, respectively. With these specifications, the system proposal is proved to be low-power, low-cost, has a long-lasting operating time and can be deployed in widespread use.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 36 条
[1]   Wireless Middleware Solutions for Smart Water Metering [J].
Alvisi, Stefano ;
Casellato, Francesco ;
Franchini, Marco ;
Govoni, Marco ;
Luciani, Chiara ;
Poltronieri, Filippo ;
Riberto, Giulio ;
Stefanelli, Cesare ;
Tortonesi, Mauro .
SENSORS, 2019, 19 (08)
[2]  
Bickar Keilin, 2019, INTEGRATING MY NEPTU
[3]  
Castillo-Secilla Jose Maria, 2010, Proceedings 2010 Third International Conference on Advances in Mesh Networks (MESH 2010), P13, DOI 10.1109/MESH.2010.16
[4]  
Cerman Martin, 2016, Advances in Visual Computing. 12th International Symposium, ISVC 2016. Proceedings: LNCS 10072, P247, DOI 10.1007/978-3-319-50835-1_23
[5]  
Cherukutota N, 2016, 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, P791, DOI 10.1109/ICCSP.2016.7754253
[6]  
Depari A, 2015, 2015 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), P468
[7]   Evaluation of Recognition of Water-meter Digits with Application Programs, APIs, and Machine Learning Algorithms [J].
Eurviriyanukul, Kwanchai ;
Phiewluang, Kriatsanga ;
Yawichai, Sirisak ;
Chaichana, Sirilak .
2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
[8]  
FERNOAGA Vlad Paul, 2018 IEEE 24 INT S D, DOI [10.1109/SIITME.2018.8599200, DOI 10.1109/SIITME.2018.8599200]
[9]  
Gallo I, 2015, 2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), P630
[10]  
Gao Yunze, 2018 INTERNET MULTIM, V819, DOI [10.1007/978- 981-10-8530-7, DOI 10.1007/978-981-10-8530-7]