SSB Binding to Single-Stranded DNA Probed Using Solid-State Nanopore Sensors

被引:29
|
作者
Japrung, Deanpen [1 ,2 ]
Bahrami, Azadeh [1 ]
Nadzeyka, Achim [3 ]
Peto, Lloyd [3 ]
Bauerdick, Sven [3 ]
Edel, Joshua B. [1 ]
Albrecht, Tim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] NSTDA, Natl Nanotechnol Ctr NANOTEC, Pathum Thani 12120, Thailand
[3] Raith GmbH, D-44263 Dortmund, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2014年 / 118卷 / 40期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
ALPHA-HEMOLYSIN NANOPORE; NUCLEIC-ACIDS; NANOPORE/ELECTRODE DEVICES; PROTEIN; MOLECULE; COMPLEXES; TRANSLOCATION; COOPERATIVITY; RESOLUTION; MULTIPLE;
D O I
10.1021/jp506832u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-stranded DNA (ssDNA) binding protein plays an important role in the DNA replication process in a wide range of organisms. It binds to ssDNA to prevent premature reannealing and to protect it from degradation. Current understanding of SSB/ssDNA interaction points to a complex mechanism, including SSB motion along the DNA strand. We report on the first characterization of this interaction at the single-molecule level using solid-state nanopore sensors. namely without any labeling or surface immobilization. our resulsts shows that the presence of SSB on the ssDNA can control the speed of nanopore translocation, presumably due to strong interactions between SSB and the nanopore surface. This enables nanopore-based detection of ssDNA fragments as short as 37 nt, which is normally very difficult with solid state nanopore sensors, due to constraints in noise and bandwidth. Notably, tis fragment is considerably shorter than the 65 nt binding motif, typically required for SSB binding at high salt concentration. The nonspecificity of SSB binding to ssDNA further suggests that this approach could be used for fragment sizing of short ssDNA.
引用
收藏
页码:11605 / 11612
页数:8
相关论文
共 50 条
  • [21] Macromolecular Crowding Enhances the Detection of DNA and Proteins by a Solid-State Nanopore
    Chau, Chalmers C.
    Radford, Sheena E.
    Hewitt, Eric W.
    Actis, Paolo
    NANO LETTERS, 2020, 20 (07) : 5553 - 5561
  • [22] Direct observation of DNA knots using a solid-state nanopore
    Plesa, Calin
    Verschueren, Daniel
    Pud, Sergii
    van der Torre, Jaco
    Ruitenberg, Justus W.
    Witteveen, Menno J.
    Jonsson, Magnus P.
    Grosberg, Alexander Y.
    Rabin, Yitzhak
    Dekker, Cees
    NATURE NANOTECHNOLOGY, 2016, 11 (12) : 1093 - 1097
  • [23] Plasmodium falciparum SSB Tetramer Binds Single-Stranded DNA Only in a Fully Wrapped Mode
    Antony, Edwin
    Kozlov, Alexander G.
    Binh Nguyen
    Lohman, Timothy M.
    JOURNAL OF MOLECULAR BIOLOGY, 2012, 420 (4-5) : 284 - 295
  • [24] SSB protein diffusion on single-stranded DNA stimulates RecA filament formation
    Roy, Rahul
    Kozlov, Alexander G.
    Lohman, Timothy M.
    Ha, Taekjip
    NATURE, 2009, 461 (7267) : 1092 - 1097
  • [25] Escherichia coli AlkB and single-stranded DNA binding protein SSB interaction explored by Molecular Dynamics Simulation
    Mohan, Monisha
    Pandya, Vishal
    Anindya, Roy
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2018, 84 : 29 - 35
  • [26] Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore
    Perera, Rukshan T.
    Fleming, Aaron M.
    Johnson, Robert P.
    Burrows, Cynthia J.
    White, Henry S.
    NANOTECHNOLOGY, 2015, 26 (07)
  • [27] Microfluidic Systems Applied in Solid-State Nanopore Sensors
    Fu, Jiye
    Wu, Linlin
    Qiao, Yi
    Tu, Jing
    Lu, Zuhong
    MICROMACHINES, 2020, 11 (03)
  • [28] Trapping DNA near a Solid-State Nanopore
    Vlassarev, Dimitar M.
    Golovchenko, Jene A.
    BIOPHYSICAL JOURNAL, 2012, 103 (02) : 352 - 356
  • [29] Statistics of DNA Capture by a Solid-State Nanopore
    Mihovilovic, Mirna
    Hagerty, Nicholas
    Stein, Derek
    PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [30] TRANSLOCATION OF λ-DNA THROUGH A SOLID-STATE NANOPORE
    Wu Hongwen
    Zhao Zhiliang
    Liu Liping
    Sun Feng
    Kong Jingling
    Ye Xiaofeng
    Chen Yiwen
    Liu Quanjun
    PROGRESS ON POST-GENOME TECHNOLOGIES AND MODERN NATURAL PRODUCTS, 2011, 2011, : 141 - 143