A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding

被引:117
|
作者
Wang, Mingliang [1 ]
Lu, Yiping [1 ]
Zhang, Guojia [1 ]
Cui, Hongzhi [2 ]
Xu, Dingfeng [1 ]
Wei, Na [2 ]
Li, Tingju [1 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Solidificat Control & Digital Preparat Te, Dalian 116024, Peoples R China
[2] Shandong Univ Sci & Technol, Sch Mat Sci & Engn, Qingdao 266590, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
HEA composite Coating; PTA cladding; Ti(C; N); Nanoprecipitate; Core-shell structure; Wear resistance; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; WEAR BEHAVIOR; MICROSTRUCTURE; TI; SOLIDIFICATION; DENSIFICATION; MOLYBDENUM; RESISTANCE; EVOLUTION;
D O I
10.1016/j.vacuum.2020.109905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel Ti(C,N)-reinforced body-centered cubic (BCC)-based Cr20Cu20Fe20Ni20Al20 high-entropy alloy (HEA) composite coating was prepared by a synchronized powder feeding plasma transferred arc (PTA) cladding. Microstructures and the wear properties of the HEA composite coating were investigated. Results showed that the HEA composite coating that exhibited dense microstructures and good metallurgical bonding with the substrate was mainly composed of BCC matrix grains containing intragranular ordered BCC (B2) cuboidal nanoprecipitates and face-centered cubic (FCC) micro/nano Ti(C,N) particles distributed along the grain boundaries. Both the Ti(C,N) particles and the cuboidal nanoprecipitates exhibited core-shell structures with the characteristics of high toughness in the core and high strength in the shell, which led to the combination of the high strength and toughness for the HEA composite coating favoring the improvement of wear resistance. The microhardness of the HEA composite coating was 3.33 times greater than that of the Q235 substrate and 127.4 HV0.1 higher than that of the pure Cr20Cu20Fe20Ni20Al20 HEA coating. The wear resistance of the HEA composite coating increased 3.03 times and 8.06 times compared with that of the pure HEA coating and substrate, respectively. The main wear mechanism of the HEA composite coating was mild abrasive wear.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Effects of Annealing on the Microstructure and Properties of 6FeNiCoCrAlTiSi High-Entropy Alloy Coating Prepared by Laser Cladding
    Zhang, Hui
    Pan, Ye
    He, Yizhu
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2011, 20 (05) : 1049 - 1055
  • [42] Effect of Fe content on the microstructure and wear resistance of AlCoCrFeNi high-entropy alloy coating prepared by laser cladding
    Li, Ying
    Shi, Yongjun
    Li, Shiwei
    Yan, Xinyu
    Wang, Shuyao
    Zhuo, Xiao
    APPLIED SURFACE SCIENCE, 2025, 685
  • [43] A novel core-shell structure composed of polypyrrole shell and high-entropy oxide/carbon cloth core for high-performance supercapatteries
    Hu, Xiaoying
    Duan, Yuzheng
    Hao, Zeyu
    Meng, Zeshuo
    Wang, Bo
    Kang, Ziqian
    Liu, Shujie
    Tian, Hongwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1009
  • [44] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Hao Liu
    Wenpeng Gao
    Jian Liu
    Xiaotong Du
    Xiaojia Li
    Haifeng Yang
    Journal of Materials Engineering and Performance, 2020, 29 : 7170 - 7178
  • [45] Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding
    Huo, Wen-yi
    Shi, Hai-fang
    Ren, Xin
    Zhang, Jing-yuan
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015
  • [46] Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding
    Zhang, Mina
    Zhou, Xianglin
    Yu, Xiangnan
    Li, Jinghao
    SURFACE & COATINGS TECHNOLOGY, 2017, 311 : 321 - 329
  • [47] Microstructure and Wear Resistance of CoCrNiMnTix High-entropy Alloy Coating by Laser Cladding
    Gao, Yu-Long
    Ma, Guo-Liang
    Gao, Xiao-Hua
    Cui, Hong-Zhi
    Surface Technology, 2022, 51 (09): : 351 - 358
  • [48] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Liu, Hao
    Gao, Wenpeng
    Liu, Jian
    Du, Xiaotong
    Li, Xiaojia
    Yang, Haifeng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (11) : 7170 - 7178
  • [49] Microstructure and Friction Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Pengfei
    Si, Wudong
    Zhang, Dabin
    Dai, Sichao
    Jiang, Benchi
    Shu, Da
    Wu, Lulu
    Zhang, Chao
    Zhang, Meisong
    MATERIALS, 2022, 15 (13)
  • [50] Microstructure and Corrosion Resistance of AlCoCrFeNiSix High-Entropy Alloy Coating by Laser Cladding
    Liu Hao
    Gao Qiang
    Hao Jingbin
    Zhang Guozhong
    Hu Yuan
    Yang Haifeng
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (06) : 2199 - 2208