Precise asymptotics in complete moment convergence of moving-average processes

被引:20
作者
Li, Yun-Xia [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Hangzhou 310018, Peoples R China
关键词
moving-average process; complete moment convergence; Berry-Esseen inequality;
D O I
10.1016/j.spl.2006.04.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we discuss moving-average process X-k = Sigma(infinity)(i=-infinity) a(i+k)epsilon(i), where {epsilon(i); -infinity < i < infinity) is a doubly infinite sequence of i.i.d random variables with mean zeros and finite variances, {a(i);-infinity<i<infinity) is an absolutely summable sequence of real numbers. Set S-n = Sigma(n)(k=1) ,X-k, n >= 1. Suppose E\epsilon(1)\(3)<infinity, we prove that, if E\epsilon(1)\(r)<infinity, for 1<p<2 and r>1 +p/2, then lim(epsilon SE arrow 0) epsilon(2(e-p)/(2-p)-1) Sigma(infinity)(n=1) n(r/p-2-1/p) E{\S-n\ - epsilon n(1/p)}(+) = p(2-p)/(r-p)(2r- p-2) E\Z](2(r-p)/(2-p)), where Z has a normal distribution with mean 0 and variance tau(2) = sigma(2)(Sigma(infinity)(i=-infinity)a(i))(2). (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1305 / 1315
页数:11
相关论文
共 10 条
[1]  
[Anonymous], INT J MATH MATH SCI
[2]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[3]  
CHEN R, 1978, J MULTIVARIATE ANAL, V8, P328, DOI DOI 10.1016/0047-259X(78)90084-2
[4]  
Chow Y. S., 1988, B I MATH ACAD SINICA, V16, P177
[5]   Precise asymptotics in the Baum-Katz and Davis laws of large numbers [J].
Gut, A ;
Spataru, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (01) :233-246
[6]   CONVERGENCE-RATES IN THE CENTRAL-LIMIT-THEOREM FOR MEANS OF AUTOREGRESSIVE AND MOVING AVERAGE SEQUENCES [J].
HALL, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 43 (01) :115-131
[7]   COMPLETE CONVERGENCE OF MOVING AVERAGE PROCESSES [J].
LI, DL ;
RAO, MB ;
WANG, XC .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (02) :111-114
[8]  
Petrov V V., 1995, LIMIT THEOREM PROBAB
[9]  
YANG XY, 1996, CHINESE ANN MATH A, V17, P703
[10]   Complete convergence of moving average processes under dependence assumptions [J].
Zhang, LX .
STATISTICS & PROBABILITY LETTERS, 1996, 30 (02) :165-170