Impulsive synchronization of Lipschitz chaotic systems

被引:22
作者
Chen, Yen-Sheng [1 ]
Chang, Chien-Cheng [1 ,2 ,3 ]
机构
[1] Acad Sinica, Res Ctr Appl Sci, Div Mech, Taipei 115, Taiwan
[2] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 106, Taiwan
关键词
GENERALIZED SYNCHRONIZATION; LAG SYNCHRONIZATION; OSCILLATORS; PHASE;
D O I
10.1016/j.chaos.2007.08.084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Impulsive method is suitable for digital implementation of secure communication based oil chaos synchronization. In the present study, it is assumed that the system satisfies the local Lipschitz condition where a Lipschitz constant is estimated a priori. An impulsive controller is shown to achieve synchronization of chaotic systems in the sense of exponential stability under one restriction relation (criterion). The Dulling two-well and the Rossler systems were simulated to illustrate the theoretical analysis. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1221 / 1228
页数:8
相关论文
共 19 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   Intersections of stable and unstable manifolds:: the skeleton of Lagrangian chaos [J].
Feudel, F ;
Witt, A ;
Gellert, M ;
Kurths, J ;
Grebogi, C ;
Sanjuán, MAF .
CHAOS SOLITONS & FRACTALS, 2005, 24 (04) :947-956
[5]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[6]   Complete and lag synchronization of hyperchaotic systems using small impulses [J].
Li, CD ;
Liao, XF .
CHAOS SOLITONS & FRACTALS, 2004, 22 (04) :857-867
[7]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[8]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[9]   Phase synchronization of chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1804-1807
[10]   From phase to lag synchronization in coupled chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4193-4196