Rings for which every cosingular module is discrete

被引:2
作者
Talebi, Yahya [1 ]
Hamzekolaee, Ali Reza Moniri [1 ]
Harmanci, Abdullah [2 ]
Ungor, Burcu [3 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
[2] Hacettepe Univ, Fac Sci, Dept Math, Ankara, Turkey
[3] Ankara Univ, Fac Sci, Dept Math, Ankara, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2020年 / 49卷 / 05期
关键词
CD-module; CD-ring; cosingular module; discrete module; V-ring; semilocal module; finite hollow dimension; TORSION;
D O I
10.15672/hujms.500759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the concepts of CD-rings and CD-modules. Let R be a ring and M be an R-module. We call R a CD-ring in case every cosingular R-module is discrete, and M a CD-module if every M-cosingular R-module in sigma[M] is discrete. If R is a ring such that the class of cosingular R-modules is closed under factor modules, then it is proved that R is a CD-ring if and only if every cosingular R-module is semisimple. The relations of CD-rings are investigated with V-rings, GV-rings, SC-rings, and rings with all cosingular R-modules projective. If R is a semilocal ring, then it is shown that R is right CD if and only if R is left SC with Soc(R-R) essential in R-R. Also, being a V-ring and being a CD-ring coincide for local rings. Besides of these, we characterize CD-modules with finite hollow dimension.
引用
收藏
页码:1635 / 1648
页数:14
相关论文
共 19 条
[1]  
ANDERSON FW, 1992, RINGS CATEGORIES MOD
[2]  
Chase S.U., 1960, Trans. Amer. Math. Soc., V97, P457
[3]  
Clark J, 2006, FRONT MATH, P1
[4]  
GOODEARL KR, 1972, MEM AM MATH SOC, P1
[5]  
Kamal MA, 2007, INT ELECTRON J ALGEB, V2, P127
[6]  
Keskin D., 2005, VIETNAM J MATH, V33, P214
[7]   On semilocal modules and rings [J].
Lomp, C .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) :1921-1935
[8]  
Mohamed S., 1977, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V24, P496
[9]  
Mohamed S.H., 1990, London Math. Soc. LNS, V147
[10]   The torsion theory cogenerated by δ-M-small modules and gco-modules [J].
Ozcan, A. Cigdem .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (02) :623-633