Micropattern of Silver/Polyaniline Core-Shell Nanocomposite Achieved by Maskless Optical Projection Lithography

被引:22
作者
Wang, Rong-Rong [1 ,2 ,3 ]
Zheng, Mei-Ling [1 ,2 ]
Zhang, Wei-Cai [1 ,2 ,3 ]
Liu, Jie [1 ,2 ]
Li, Teng [1 ,2 ,3 ]
Dong, Xian-Zi [1 ,2 ]
Jin, Feng [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Lab Organ NanoPhoton, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Future Technol, Beijing 101407, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
maskless optical projection lithography; femtosecond laser; conductive polymer; polyaniline; Ag nanoparticles; nanocomposites; PERFORMANCE; MICROSPHERES; NANOTUBES;
D O I
10.1021/acs.nanolett.2c02528
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the development of device miniaturization, a flexible and fast preparation method is in demand for achieving microstructures with desired patterns. We develop a novel photoreduction-polymerization method for preparing conductive metal-polymer patterns. Ag/polyaniline (PANI) nanocomposites have been successfully synthesized by maskless optical projection lithography (MOPL) technology, which is based on multiphoton absorption and the localized surface plasmon resonance (LSPR) effect. The individualized design and synthesis of the nanocomposite patterns at the micro-nano scale are flexibly realized on a variety of substrates. The surfaceenhanced Raman scattering (SERS) effect of Rhodamine 6G (R6G) is demonstrated on the microstructure of a square maze-shaped Ag/PANI nanocomposite. The electrical conductivity of the as-prepared nanocomposite is obtained. The preparation protocol proposed in this study opens up new avenues for the fabrication of micro-nano devices such as sensors and detectors.
引用
收藏
页码:9823 / 9830
页数:8
相关论文
共 41 条
[1]   Silver nanocluster formation in silica coatings by the sol-gel route [J].
Armelao, L ;
Bertoncello, R ;
DeDominicis, M .
ADVANCED MATERIALS, 1997, 9 (09) :736-741
[2]   Functional aqueous-based polyaniline inkjet inks for fully printed high-performance pH-sensitive electrodes [J].
Bilbao, Emanuel ;
Kapadia, Sunil ;
Riechert, Veronica ;
Amalvy, Javier ;
Molinari, Fabricio N. ;
Escobar, Mariano M. ;
Baumann, Reinhard R. ;
Monsalve, Leandro N. .
SENSORS AND ACTUATORS B-CHEMICAL, 2021, 346
[3]   Easily Synthesized Polyaniline@Cellulose Nanowhiskers Better Tune Network Structures in Ag-Based Adhesives: Examining the Improvements in Conductivity, Stability, and Flexibility [J].
Cao, Ge ;
Gao, Xiaolan ;
Wang, Linlin ;
Cui, Huahua ;
Lu, Junyi ;
Meng, Yuan ;
Xue, Wei ;
Cheng, Chun ;
Tian, Yanhong ;
Tian, Yanqing .
NANOMATERIALS, 2019, 9 (11)
[4]   Impedance Hyperbolicity in Inkjet-Printed Graphene Nanocomposites: Tunable Capacitors for Advanced Devices [J].
Chiolerio, Alessandro ;
Porro, Samuele ;
Bocchini, Sergio .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (03)
[5]   Inkjet Printed Negative Supercapacitors: Synthesis of Polyaniline-Based Inks, Doping Agent Effect, and Advanced Electronic Devices Applications [J].
Chiolerio, Alessandro ;
Bocchini, Sergio ;
Porro, Samuele .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (22) :3375-3383
[6]   Ultrastable silver nanoparticles [J].
Desireddy, Anil ;
Conn, Brian E. ;
Guo, Jingshu ;
Yoon, Bokwon ;
Barnett, Robert N. ;
Monahan, Bradley M. ;
Kirschbaum, Kristin ;
Griffith, Wendell P. ;
Whetten, Robert L. ;
Landman, Uzi ;
Bigioni, Terry P. .
NATURE, 2013, 501 (7467) :399-402
[7]   Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode [J].
Dhibar, Saptarshi ;
Das, Chapal Kumar .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (09) :3495-3508
[8]   Ultra-Stretchable and Force-Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks [J].
Duan, Jiangjiang ;
Liang, Xichao ;
Guo, Jinhua ;
Zhu, Kunkun ;
Zhang, Lina .
ADVANCED MATERIALS, 2016, 28 (36) :8037-8044
[9]   Ionic Carbazole-Based Water-Soluble Two-Photon Photoinitiator and the Fabrication of Biocompatible 3D Hydrogel Scaffold [J].
Gao, Wen ;
Chao, Hao ;
Zheng, Yong-Chao ;
Zhang, Wei-Cai ;
Liu, Jie ;
Jin, Feng ;
Dong, Xian-Zi ;
Liu, Yan-Hong ;
Li, Shu-Jing ;
Zheng, Mei-Ling .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) :27796-27805
[10]   Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization [J].
Geng, Qiang ;
Wang, Dien ;
Chen, Pengfei ;
Chen, Shih-Chi .
NATURE COMMUNICATIONS, 2019, 10 (1)