The authors show a nondestructive method for obtaining the isochromatic and isoclinic fringes in a three-dimensional photoelastic specimen. The basic idea is to delimit a slice between two plane laser beams. The properties of polarization of the scattered light (Rayleigh's law) and the interference possibilities of the diffused beams are used. By introducing speckle pattern properties, the correlation factor of the two scattered beams is similar to the illumination given in a plane polariscope for the investigation of a slice (in a classical frozen-stress technique). The authors use a monochromatic laser beam, a CCD camera and a personal computer. Because they cannot obtain the correlation factor directly, they do a statistical analysis of the speckle patterns. The variance (function of the correlation factor) is computed from the light intensities of three images corresponding to the speckle pattern for plane 1 alone, plane 2 alone, and both planes together.