Many-body physics in two-component Bose-Einstein condensates in a cavity: fragmented superradiance and polarization

被引:20
作者
Lode, Axel U. J. [1 ,2 ]
Diorico, Fritz S. [2 ]
Wu, RuGway [2 ]
Molignini, Paolo [3 ]
Papariello, Luca [3 ]
Lin, Rui [3 ]
Leveque, Camille [1 ,2 ]
Exl, Lukas [4 ,5 ]
Tsatsos, Marios C. [6 ]
Chitra, R. [3 ]
Mauser, Norbert J. [1 ]
机构
[1] Univ Vienna, Wolfgang Pauli Inst, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, Stadionallee 2, A-1020 Vienna, Austria
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[4] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[5] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[6] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP, Brazil
基金
奥地利科学基金会; 巴西圣保罗研究基金会; 瑞士国家科学基金会;
关键词
many body systems; time dependent Schrodinger equation; Bose-Einstein condensates; light-matter interaction; multi-component systems; MCTDHB; QUANTUM PHASE-TRANSITION; ULTRACOLD ATOMS; CONTROLLED COLLISIONS; OPTICAL LATTICES; GAS; ENTANGLEMENT; POTENTIALS; SUPERFLUID; COHERENCE; COMPUTER;
D O I
10.1088/1367-2630/aabc3a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose-Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms-the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.
引用
收藏
页数:10
相关论文
共 82 条
[1]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[2]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[3]   Coherent Coupling of Remote Spin Ensembles via a Cavity Bus [J].
Astner, T. ;
Nevlacsil, S. ;
Peterschofsky, N. ;
Angerer, A. ;
Rotter, S. ;
Putz, S. ;
Schmiedmayer, J. ;
Majer, J. .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[4]   Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap [J].
Bader, Philipp ;
Fischer, Uwe R. .
PHYSICAL REVIEW LETTERS, 2009, 103 (06)
[5]   Exploring Symmetry Breaking at the Dicke Quantum Phase Transition [J].
Baumann, K. ;
Mottl, R. ;
Brennecke, F. ;
Esslinger, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[6]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[7]  
Berman P. R., 1994, Cavity quantum electrodynamics
[8]   Manipulation and coherence of ultra-cold atoms on a superconducting atom chip [J].
Bernon, Simon ;
Hattermann, Helge ;
Bothner, Daniel ;
Knufinke, Martin ;
Weiss, Patrizia ;
Jessen, Florian ;
Cano, Daniel ;
Kemmler, Matthias ;
Kleiner, Reinhold ;
Koelle, Dieter ;
Fortagh, Jozsef .
NATURE COMMUNICATIONS, 2013, 4
[9]   Quantum coherence and entanglement with ultracold atoms in optical lattices [J].
Bloch, Immanuel .
NATURE, 2008, 453 (7198) :1016-1022
[10]  
Bogoliubov N N, 1991, SELECTED WORKS