Low Frequency Noise measurements of advanced BiCMOS SiGeC Heterojunction Bipolar Transistors used for mm-Wave to Terahertz applications

被引:0
|
作者
Seif, M. [1 ]
Pascal, F. [1 ]
Sagnes, B. [1 ]
Hoffmann, A. [1 ]
Haendler, S. [2 ]
Chevalier, P. [2 ]
Gloria, D. [2 ]
机构
[1] Univ Montpellier 2, IES, Pl E Bataillon, F-34095 Montpellier, France
[2] STMicroelect, F-38926 Crolles, France
来源
2013 22ND INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF) | 2013年
关键词
BiCMOS; Heterojunction bipolar transistor (HBT); SiGe:C; Low frequency noise;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we present recent low frequency noise results obtained on Si/SiGeC Heterojunction Bipolar Transistors (HBTs) associated with a 0.13 mu m BiCMOS technology. Two technologies are studied, referenced as A and B, with high frequency figures of merit f(T)/f(MAX) (unity current gain frequency / maximum oscillation frequency) 220/280 GHz for technology A and 300/400 GHz for technology B. The LF Noise measurements are performed in the 1Hz-100 kHz frequency range as a function of the base bias current and of the emitter area A(E)(.) The 1/f noise component is studied through the SPICE LFN parameters A(F) and K-F. The K-B figure of merit (K-B = K-F * A(E)), used to compare the 1/f noise level, has an excellent value of 1.5 10(-10) mu m(2) for technology A and above 6 10(-10) mu m(2) for technology B. Dispersion of the 1/f noise level observed on technology B is associated to the presence of predominant GR components. A temperature study of the 1/f noise level evolution in the range 15 - 100 degrees C was also done. The temperature dependence is week except at very low base current bias.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Low Frequency Noise in Strained Si Heterojunction Bipolar Transistors
    Fjer, M.
    Persson, S.
    Escobedo-Cousin, E.
    O'Neill, A. G.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) : 4196 - 4203
  • [12] Comparative low frequency noise analysis of bipolar and MOS transistors using an advanced complementary BICMOS technology
    Babcock, JA
    Loftin, B
    Madhani, P
    Chen, XF
    Pinto, A
    Schroder, DK
    PROCEEDINGS OF THE IEEE 2001 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2001, : 385 - 388
  • [13] A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications
    Musa, Ahmed
    Murakami, Rui
    Sato, Takahiro
    Chaivipas, Win
    Okada, Kenichi
    Matsuzawa, Akira
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (11) : 2635 - 2649
  • [14] An Improved Transfer Current Model for RF and mm-Wave SiGe(C) Heterojunction Bipolar Transistors
    Pawlak, Andreas
    Schroter, Michael
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) : 2612 - 2618
  • [15] Low-frequency noise of InP/InGaAs heterojunction bipolar transistors
    Takanashi, Y
    Fukano, H
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (12) : 2400 - 2406
  • [16] Low-frequency noise properties of SiGe heterojunction bipolar transistors
    Hsieh, Meng-Wei
    Hsin, Yue-Ming
    Chan, Yi-Jen
    Tang, Denny
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (9A): : 5729 - 5733
  • [17] Low frequency noise characteristics of AlInAs/InGaAs heterojunction bipolar transistors
    Jang, SL
    Chen, WM
    Lin, HH
    Huang, CH
    SOLID-STATE ELECTRONICS, 1996, 39 (11) : 1581 - 1592
  • [18] Improvement of 1/f noise in advanced 0.13 μm BiCMOS SiGe:C Heterojunction Bipolar Transistors
    Pascal, F.
    Raoult, J.
    Sagnes, B.
    Hoffmann, A.
    Haendler, S.
    Morin, G.
    2011 21ST INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2011, : 279 - 282
  • [19] Full direct low frequency noise characterization of GaAs heterojunction bipolar transistors
    Borgarino, M
    SOLID-STATE ELECTRONICS, 2005, 49 (08) : 1361 - 1369
  • [20] A Low-Noise Fractional-N Digital Frequency Synthesizer With Implicit Frequency Tripling for mm-Wave Applications
    Zong, Zhirui
    Chen, Peng
    Staszewski, Robert Bogdan
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (03) : 755 - 767