Use of Gel Electrophoresis and Raman Spectroscopy to Characterize the Effect of the Electronic Structure of Single-Walled Carbon Nanotubes on Cellular Uptake

被引:6
作者
Chilek, Jennifer L. [1 ]
Wang, Ruhung [1 ,2 ]
Draper, Rockford K. [1 ,2 ,3 ]
Pantano, Paul [1 ,3 ]
机构
[1] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Mol & Cell Biol, Richardson, TX 75080 USA
[3] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75080 USA
基金
美国国家卫生研究院;
关键词
PARTICLE TRACKING; INTERNALIZATION; TRANSLOCATION; TRANSPORTERS; FLUORESCENCE; BSA;
D O I
10.1021/ac403827m
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It is well-known that the uptake of single-walled carbon nanotubes (SWNTs) by living cells depends on factors such as SWNT length and surface chemistry. Surprisingly, little is known about whether the electronic structure of a SWNT influences uptake. One reason for this has been the lack of methods to measure the uptake of SWNTs by cell populations. Previously, we developed a rapid, sensitive, and label-free sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) method for measuring, the amount of SWNTs in lysates prepared from cultured cells (Wang et al. Anal. Chem. 2009, 81, 2944). Herein, we describe the use of SDS-PAGE and microprobe Raman spectroscopy to detect and distinguish the electronic structure of SWNTs internalized by mammalian cells. Using normal rat kidney (NRK) cells and SWNTs dispersed with bovine serum albumin (BSA), we demonstrate that the method can detect both metallic and semiconducting SWNTs in lysates of cells that had internalized BSA-SWNTs and that the uptake of BSA-SWNTs by NRK cells is not influenced by SWNT electronic structure.
引用
收藏
页码:2882 / 2887
页数:6
相关论文
共 40 条
[1]   Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes [J].
Becker, Matthew L. ;
Fagan, Jeffrey A. ;
Gallant, Nathan D. ;
Bauer, Barry J. ;
Bajpai, Vardan ;
Hobbie, Erik K. ;
Lacerda, Silvia H. ;
Migler, Kalman B. ;
Jakupciak, John P. .
ADVANCED MATERIALS, 2007, 19 (07) :939-+
[2]   Biomedical applications of functionalised carbon nanotubes [J].
Bianco, A ;
Kostarelos, K ;
Partidos, CD ;
Prato, M .
CHEMICAL COMMUNICATIONS, 2005, (05) :571-577
[3]   PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead [J].
Bottini, Massimo ;
Rosato, Nicola ;
Bottini, Nunzio .
BIOMACROMOLECULES, 2011, 12 (10) :3381-3393
[4]   Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells [J].
Cherukuri, P ;
Bachilo, SM ;
Litovsky, SH ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (48) :15638-15639
[5]   Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells [J].
Chin, Shook-Fong ;
Baughman, Ray H. ;
Dalton, Alan B. ;
Dieckmann, Gregg R. ;
Draper, Rockford K. ;
Mikoryak, Carole ;
Musselman, Inga H. ;
Poenitzsch, Vasiliki Z. ;
Xie, Hui ;
Pantano, Paul .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2007, 232 (09) :1236-1244
[6]   Carbon Nanotube-Based Nanocarriers: The Importance of Keeping It Clean [J].
Delogu, Lucia G. ;
Stanford, Stephanie M. ;
Santelli, Eugenio ;
Magrini, Andrea ;
Bergamaschi, Antonio ;
Motamedchaboki, Khatereh ;
Rosato, Nicola ;
Mustelin, Tomas ;
Bottini, Nunzio ;
Bottini, Massimo .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (08) :5293-5301
[7]   Raman spectroscopy on isolated single wall carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Jorio, A ;
Souza, AG ;
Saito, R .
CARBON, 2002, 40 (12) :2043-2061
[8]   pH effects on BSA-dispersed carbon nanotubes studied by spectroscopy-enhanced composition evaluation techniques [J].
Edri, Eran ;
Regev, Oren .
ANALYTICAL CHEMISTRY, 2008, 80 (11) :4049-4054
[9]   Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies [J].
Elgrabli, Dan ;
Abella-Gallart, Steve ;
Aguerre-Chariol, Olivier ;
Robidel, Franck ;
Rogerieux, Francoise ;
Boczkowski, Jorge ;
Lacroix, Ghislaine .
NANOTOXICOLOGY, 2007, 1 (04) :266-278
[10]  
Fantini C., 2004, PHYS REV LETT, V93, P1