A Hyperspectral Dermoscopy Dataset for Melanoma Detection

被引:4
作者
Gu, Yanyang [1 ]
Partridge, Yi-Ping [2 ]
Zhou, Jun [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld, Australia
[2] Kalowen Skin Canc Clin, Caloundra, Australia
来源
OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018 | 2018年 / 11041卷
关键词
Skin cancer; Melanoma; Hyperspectral imaging; Dermoscopy; Dataset;
D O I
10.1007/978-3-030-01201-4_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Melanoma is the most fatal type of skin cancer. Non-invasive melanoma detection is crucial for preliminary screening and early diagnosis. Among various image based techniques, hyperspectral imaging is a tool with great potential for melanoma detection since it provides highly detailed spectral information beyond the human vision capability. However, so far no hyperspectral image dataset has been published, although some pilot methods have been studied. In this paper, we introduce a hyperspectral dermoscopy image dataset for melanoma detection. This dataset consists of 330 hyperspectral images with 16 spectral bands each in the visible wavelength, containing images of melanoma, dysplastic nevus, and other types, all histopathologically validated. To build a baseline for melanoma detection, we evaluate several classification methods on the dataset.
引用
收藏
页码:268 / 276
页数:9
相关论文
共 21 条
  • [1] [Anonymous], LECT NOTES COMPUTER
  • [2] Characterization of burns using hyperspectral imaging technique - A preliminary study
    Calin, Mihaela Antonina
    Parasca, Sorin Viorel
    Savastru, Roxana
    Manea, Dragos
    [J]. BURNS, 2015, 41 (01) : 118 - 124
  • [3] Chang I., 2003, HYPERSPECTRAL IMAGIN, DOI [10.1007/978-1-4419-9170-6, DOI 10.1007/978-1-4419-9170-6]
  • [4] Deng Cai, 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2905, DOI 10.1109/CVPR.2011.5995390
  • [5] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [6] A Completed Modeling of Local Binary Pattern Operator for Texture Classification
    Guo, Zhenhua
    Zhang, Lei
    Zhang, David
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) : 1657 - 1663
  • [7] Detection of Gunshot Residue on Dark-Colored Clothing Prior to Chemical Analysis
    Kersh, Kyla L.
    Childers, James M.
    Justice, Dale
    Karim, Greg
    [J]. JOURNAL OF FORENSIC SCIENCES, 2014, 59 (03) : 754 - 762
  • [8] Medical hyperspectral imaging: a review
    Lu, Guolan
    Fei, Baowei
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)
  • [9] Madooei A, 2013, LECT NOTES COMPUT SC, V8151, P453, DOI 10.1007/978-3-642-40760-4_57
  • [10] Nagaoka T, 2012, IEEE ENG MED BIO, P3728, DOI 10.1109/EMBC.2012.6346777