Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance

被引:45
作者
Xu, Mingrui [1 ]
Han, Xu [1 ]
Fu, Wei [1 ]
Zou, Chang-Ling [2 ]
Devoret, Michel H. [3 ]
Tang, Hong X. [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[2] Univ Sci & Technol China, Key Lab Quantum Informat, CAS, Hefei 230026, Anhui, Peoples R China
[3] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
关键词
BAND;
D O I
10.1063/1.5098466
中图分类号
O59 [应用物理学];
学科分类号
摘要
Frequency-tunable microwave resonators are in great demand especially in hybrid systems where precise frequency alignment of resonances is required. Here, we present frequency-tunable high-Q superconducting resonators fabricated from thin niobium nitride and niobium titanium nitride films. The resonant frequency is tuned by applying a magnetic field perpendicular to the hole structures in the resonator's inductor wire, whose kinetic inductance is modified by wirelessly induced DC supercurrents. A continuous in situ frequency tuning of over 300MHz is achieved for a 10GHz resonator with a moderate magnetic field of 1.2mT. The planar resonator design and the noncontact tuning scheme greatly ease the fabrication complexity and can be widely applied in many hybrid systems for coupling microwave modes with other forms of excitations such as optical photons, phonons, magnons, and spins.
引用
收藏
页数:4
相关论文
共 28 条
[1]   Nondegenerate three-wave mixing with the Josephson ring modulator [J].
Abdo, Baleegh ;
Kamal, Archana ;
Devoret, Michel .
PHYSICAL REVIEW B, 2013, 87 (01)
[2]   Tunable superconducting microstrip resonators [J].
Adamyan, A. A. ;
Kubatkin, S. E. ;
Danilov, A. V. .
APPLIED PHYSICS LETTERS, 2016, 108 (17)
[3]   Tunable superconducting nanoinductors [J].
Annunziata, Anthony J. ;
Santavicca, Daniel F. ;
Frunzio, Luigi ;
Catelani, Gianluigi ;
Rooks, Michael J. ;
Frydman, Aviad ;
Prober, Daniel E. .
NANOTECHNOLOGY, 2010, 21 (44)
[4]  
[Anonymous], 2014, EARLY HUM DEV S1, V90, pS35, DOI DOI 10.1103/PhysRevB.90.075112
[5]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[6]  
Bienfait A, 2016, NAT NANOTECHNOL, V11, P253, DOI [10.1038/NNANO.2015.282, 10.1038/nnano.2015.282]
[7]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[8]   Magnetic hysteresis effects in superconducting coplanar microwave resonators [J].
Bothner, D. ;
Gaber, T. ;
Kemmler, M. ;
Koelle, D. ;
Kleiner, R. ;
Wuensch, S. ;
Siegel, M. .
PHYSICAL REVIEW B, 2012, 86 (01)
[9]   Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator [J].
Castellanos-Beltrana, M. A. ;
Lehnert, K. W. .
APPLIED PHYSICS LETTERS, 2007, 91 (08)
[10]   Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines [J].
Chaudhuri, S. ;
Li, D. ;
Irwin, K. D. ;
Bockstiegel, C. ;
Hubmayr, J. ;
Ullom, J. N. ;
Vissers, M. R. ;
Gao, J. .
APPLIED PHYSICS LETTERS, 2017, 110 (15)