Two rational recursive sequences

被引:26
作者
Li, XY [1 ]
Zhu, DM
机构
[1] Nanhua Univ, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
rational sequence; recursive difference equation; global asymptotic stability; semicycle;
D O I
10.1016/j.camwa.2004.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two sufficient conditions are obtained for the global asymptotic stability of the following two rational difference equations x(n+1) = x(n)x(n-2)+a/x(n)+x(n-2), n = 0, 1, 2, . . . , and x(n+1) = x(n-1)x(n-2)+a/x(n-1)+x(n-2), n = 0, 1, 2, . . . , where a is an element of [0, infinity) and the initial values x(-2), x(-1), x(0) is an element of (0, infinity). (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1487 / 1494
页数:8
相关论文
共 12 条
[1]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[2]   On the recursive sequence xn+1=α+xn-1/xn [J].
Amleh, AM ;
Grove, EA ;
Ladas, G ;
Georgiou, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) :790-798
[3]   On a class of difference equations with strong negative feedback [J].
Amleh, AM ;
Kruse, N ;
Ladas, G .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1999, 5 (06) :497-515
[4]  
Gibbons C.H., 2000, Math. Sci. Res. Hot-line, V4, P1
[5]  
KOCIC VL, 1993, GLOBAL BEHAV NONLINE
[6]  
LADAS G, 1998, J DIFFER EQUATIONS A, V4
[7]  
LADAS G, 1995, J DIFFER EQU APPL, V2, P211
[8]  
Li X., 2002, APPL MATH JCU SET B, V17, P178
[9]   Global asymptotic stability for two recursive difference equations [J].
Li, XY ;
Zhu, DM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (02) :481-492
[10]   Global asymptotic stability in a rational equation [J].
Li, XY ;
Zhu, DM .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (09) :833-839