DEFORMATION QUANTIZATION OF POISSON MANIFOLDS IN THE DERIVATIVE EXPANSION

被引:1
作者
Bratchikov, A. V. [1 ]
机构
[1] Kuban State Technol Univ, Krasnodar 350072, Russia
关键词
Deformation quantization; non-commutative geometry;
D O I
10.1142/S0219887809003485
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deformation quantization of Poisson manifolds is studied within the framework of an expansion in powers of derivatives of Poisson structures. We construct the Lie group associated with a Poisson bracket algebra which defines a second order deformation in the derivative expansion.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 7 条
[1]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[2]  
Bourbaki N., 1972, Groupes et algebres de Lie
[3]   A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION [J].
FEDOSOV, BV .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) :213-238
[4]   AN EXPLICIT STAR-PRODUCT ON THE COTANGENT BUNDLE OF A LIE GROUP [J].
GUTT, S .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (03) :249-258
[5]  
KATHOTIA V, MATHQA9811174
[6]   Deformation quantization of Poisson manifolds [J].
Kontsevich, M .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) :157-216
[7]  
PENKAVA M, MATHQA9804022