New summation relations for the Stieltjes constants

被引:14
作者
Coffey, Mark W. [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2073期
关键词
Stieltjes constants; Riemann zeta function; Hurwitz zeta function; Laurent expansion; Stirling numbers; functional equation;
D O I
10.1098/rspa.2006.1692
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Stieltjes constants gamma(k)(a) have been of interest for over a century, yet their detailed behaviour remains under investigation. These constants appear in the Laurent expansion of the Hurwitz zeta function zeta(s, a) about s = 1. We obtain novel single and double summatory relations for gamma(k)(a), including single summation relations for gamma(k)(a - b) and gamma(k)(a+p/q), where a and b are real and p and q are positive integers. In addition, we obtain new integration formulae for the Hurwitz zeta function and a new expression for the Stieltjes constants gamma(k)(1) gamma(k). Portions of the presentation show an intertwining of the theory of the hypergeometric function with that of the Hurwitz zeta function.
引用
收藏
页码:2563 / 2573
页数:11
相关论文
共 26 条
[1]  
[Anonymous], MICHIGAN MATH J
[2]  
[Anonymous], Q J PURE APPL MATH
[3]  
[Anonymous], 1912, Q J PURE APPL MATH
[4]  
[Anonymous], C R ACAD SCI PARIS
[5]  
[Anonymous], 1981, T MAT I STEKLOVA
[6]  
[Anonymous], 1962, MICH MATH J, DOI DOI 10.1307/MMJ/1028998775
[7]  
[Anonymous], J LOND MATH SOC
[8]  
Berndt C., 1972, Rocky Mt. J. Math, V1, P151
[9]   New results on the Stieltjes constants: Asymptotic and exact evaluation [J].
Coffey, MW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (02) :603-612
[10]  
Edwards H.M., 1974, Riemann's Zeta Function