Uniform Distribution of Alloying/Dealloying Stress for High Structural Stability of an Al Anode in High-Areal-Density Lithium-Ion Batteries

被引:103
作者
Zhang, Miao [1 ]
Xiang, Lei [1 ,2 ]
Galluzzi, Massimiliano [3 ]
Jiang, Chunlei [1 ]
Zhang, Shanqing [4 ]
Li, Jiangyu [3 ]
Tang, Yongbing [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Funct Thin Films Res Ctr, Shenzhen 518055, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Peoples R China
[4] Griffith Univ, Sch Environm & Sci, Ctr Clean Environm & Energy, Mt Gravatt, Qld 4222, Australia
基金
中国国家自然科学基金;
关键词
Al anodes; alloying/dealloying; high areal density; structural stability; ENERGY-STORAGE; ALUMINUM; PERFORMANCE; CAPACITY; SILICON;
D O I
10.1002/adma.201900826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aluminum (Al) is one of the most attractive anode materials for lithium-ion batteries (LIBs) due to its high theoretical specific capacity, excellent conductivity, abundance, and especially low cost. However, the large volume expansion, originating from the uneven alloying/dealloying reactions in the charge/discharge process, causes structural stress and electrode pulverization, which has long hindered its practical application, especially when assembled with a high-areal-density cathode. Here, an inactive (Cu) and active (Al) co-deposition strategy is reported to homogeneously distribute the alloying sites and disperse the stress of volume expansion, which is beneficial to obtain the structural stability of the Al anode. Owing to the homogeneous reaction and uniform distribution of stress during the charge/discharge process, the assembled full battery (LiFePO4 cathode with a high areal density of approximate to 7.4 mg cm(-2)) with the Cu-Al@Al anode, achieves a high capacity retention of approximate to 88% over 200 cycles, suggesting the feasibility of the interfacial design to optimize the structural stability of alloying metal anodes for high-performance LIBs.
引用
收藏
页数:7
相关论文
共 64 条
[1]   Self-Standing Highly Conductive Solid Electrolytes Based on Block Copolymers for Rechargeable All-Solid-State Lithium-Metal Batteries [J].
Aldalur, Itziar ;
Martinez-Ibanez, Maria ;
Piszcz, Michal ;
Zhang, Heng ;
Armanda, Michel .
BATTERIES & SUPERCAPS, 2018, 1 (04) :149-159
[2]   Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries [J].
Breitung, Ben ;
Schneider, Artur ;
Chakravadhanula, Sai Kiran ;
Suchomski, Christian ;
Janek, Juergen ;
Sommer, Heino ;
Brezesinski, Torsten .
BATTERIES & SUPERCAPS, 2018, 1 (01) :27-32
[3]   Vanadium (III) Oxide/Carbon Core/Shell Hybrids as an Anode for Lithium-Ion Batteries [J].
Budak, Oznil ;
Srimuk, Pattarachai ;
Tolosa, Aura ;
Fleischmann, Simon ;
Lee, Juhan ;
Hieke, Stefan W. ;
Frank, Anna ;
Scheu, Christina ;
Presser, Volker .
BATTERIES & SUPERCAPS, 2019, 2 (01) :74-82
[4]   Electrochemical performances of Al-based composites as anode materials for Li-ion batteries [J].
Chen, Zhongxue ;
Qian, Jiangfeng ;
Ai, Xinping ;
Cao, Yuliang ;
Yang, Hanxi .
ELECTROCHIMICA ACTA, 2009, 54 (16) :4118-4122
[5]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[6]   High-Energy Aqueous Lithium Batteries [J].
Eftekhari, Ali .
ADVANCED ENERGY MATERIALS, 2018, 8 (24)
[7]   An Overview and Future Perspectives of Aluminum Batteries [J].
Elia, Giuseppe Antonio ;
Marquardt, Krystan ;
Hoeppner, Katrin ;
Fantini, Sebastien ;
Lin, Rongying ;
Knipping, Etienne ;
Peters, Willi ;
Drillet, Jean-Francois ;
Passerini, Stefano ;
Hahn, Robert .
ADVANCED MATERIALS, 2016, 28 (35) :7564-7579
[8]   Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications [J].
Feng, Kun ;
Li, Matthew ;
Liu, Wenwen ;
Kashkooli, Ali Ghorbani ;
Xiao, Xingcheng ;
Cai, Mei ;
Chen, Zhongwei .
SMALL, 2018, 14 (08)
[9]   Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles [J].
Ha, Sung Hoon ;
Shin, Kyu Hang ;
Park, Hae Won ;
Lee, Yun Jung .
SMALL, 2018, 14 (43)
[10]   Atomic Layer Deposition of Rhenium Disulfide [J].
Hamalainen, Jani ;
Mattinen, Miika ;
Mizohata, Kenichiro ;
Meinander, Kristoffer ;
Vehkamaki, Marko ;
Raisanen, Jyrki ;
Ritala, Mikko ;
Leskela, Markku .
ADVANCED MATERIALS, 2018, 30 (24)