On Leray's self-similar solutions of the Navier-Stokes equations

被引:186
作者
Necas, J
Ruzicka, M
Sverak, V
机构
[1] CHARLES UNIV, INST MATH, PRAGUE, CZECH REPUBLIC
[2] UNIV MINNESOTA, SCH MATH, MINNEAPOLIS, MN 55455 USA
[3] UNIV BONN, INST APPL MATH, D-53115 BONN, GERMANY
关键词
D O I
10.1007/BF02551584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:283 / 294
页数:12
相关论文
共 24 条
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[4]  
CATTABRIGA L, 1961, REND SEMIN MAT U PAD, V31, P308
[5]   REGULARITY FOR THE STATIONARY NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS [J].
FREHSE, J ;
RUZICKA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :361-380
[6]  
Frehse J., 1994, ANN SC NORM SUPER S, V21, P63
[7]  
Galdi G.P., 1994, INTRO MATH THEORY NA, VI
[8]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[9]  
GILBARG D., 1974, RUSS MATH SURV, V29, P109, DOI DOI 10.1070/RM1974V029N02ABEH003843
[10]  
Gilbarg D., 1983, GRUND MATH WISS, P224, DOI DOI 10.1007/978-3-642-61798-0