Sound assisted fluidization of nanoparticle agglomerates

被引:126
|
作者
Zhu, C [1 ]
Liu, GL
Yu, Q
Pfeffer, R
Dave, RN
Nam, CH
机构
[1] New Jersey Inst Technol, Dept Mech Engn, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Chem Engn, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
fluidization; nanoparticles; agglomerate; sound waves;
D O I
10.1016/j.powtec.2004.01.023
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents some preliminary observations on sound-assisted fluidization of hydrophobic fumed silica nanoparticles (Degussa Aerosil(R) R974, having a primary particle size of 12 nm) in the form of large 100-400 mum agglomerates. The effect of sound on the fluidization behavior of the nanoparticle agglomerates, including the fluidization regime, the minimum fluidization velocity, the bed pressure drop and the bed expansion has been investigated. It is shown that, with the aid of sound wave excitation at low frequencies, the bed of nanoparticle agglomerates can be readily fluidized and the minimum fluidization velocity is significantly reduced. For example, the minimum fluidization velocity is decreased from 0.14cm/s in the absence of sound excitation to 0.054 cm/s with the assistance of the sound. In addition, under the influence of sound, channeling or slugging of the bed quickly disappears and the bed expands uniformly. Within a certain range of the sound frequency, typically from 200 to 600 Hz, bubbling fluidization occurs. Both the bed expansion and the bubble characteristics are strongly dependent on the sound frequency and sound pressure level. However, sound has almost no impact on the fluidization, when the sound frequency is extremely high, above 2000 Hz. A relatively high sound pressure level (such as 115 dB) is needed to initiate the fluidization. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [31] Impact fragmentation of nanoparticle agglomerates
    Froeschke, S. (sonja.froeschke@mvm.uni-karlsruhe.de), 1600, Elsevier Ltd (34):
  • [32] Sound-Assisted Fluidization for Temperature Swing Adsorption and Calcium Looping: A Review
    Raganati, Federica
    Ammendola, Paola
    MATERIALS, 2021, 14 (03) : 1 - 24
  • [33] The fractal scaling of fluidized nanoparticle agglomerates
    de Martin, Lilian
    Fabre, Andrea
    van Ommen, J. Ruud
    CHEMICAL ENGINEERING SCIENCE, 2014, 112 : 79 - 86
  • [34] Sound-assisted fluidization of SiO2 nanoparticles with different surface properties
    Liu, Huie
    Guo, Qingjie
    Chen, Shuang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (04) : 1345 - 1349
  • [35] Interparticle forces in silica nanoparticle agglomerates
    Seipenbusch, M.
    Rothenbacher, S.
    Kirchhoff, M.
    Schmid, H. -J.
    Kasper, G.
    Weber, A. P.
    JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (06) : 2037 - 2044
  • [36] Multidimensional Nature of Fluidized Nanoparticle Agglomerates
    de Martin, Lilian
    Bouwman, Wim G.
    van Ommen, J. Ruud
    LANGMUIR, 2014, 30 (42) : 12696 - 12702
  • [37] Light scattering from nanoparticle agglomerates
    Kelesidis, Georgios A.
    Kholghy, Mohammad Reza
    Zuercher, Joel
    Robertz, Julian
    Allemann, Martin
    Duric, Aleksandar
    Pratsinis, Sotiris E.
    POWDER TECHNOLOGY, 2020, 365 : 52 - 59
  • [38] Fragmentation of nanoparticle agglomerates in gas phase
    Oshio, Nao
    Oda, Keiichi
    Yabuhana, Masaki
    Okada, Yoshiki
    29TH SYMPOSIUM ON AEROSOL SCIENCE AND TECHNOLOGY, 2012, 2012, : 31 - 32
  • [39] Magnetization State in Magnetic Nanoparticle Agglomerates
    Bregar, Vladimir B.
    Pavlin, Mojca
    Znidarsic, Andrej
    8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS, 2010, 1311 : 59 - 64
  • [40] Interparticle forces in silica nanoparticle agglomerates
    M. Seipenbusch
    S. Rothenbacher
    M. Kirchhoff
    H.-J. Schmid
    G. Kasper
    A. P. Weber
    Journal of Nanoparticle Research, 2010, 12 : 2037 - 2044