Entropy of Schur-Weyl measures

被引:1
|
作者
Mkrtchyan, Sevak [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 02期
关键词
Asymptotic representation theory; Schur-Weyl duality; Plancherel measure; Schur-Weyl measure; Vershik-Kerov conjecture; PLANCHEREL MEASURES; RANDOM PARTITIONS; SYMMETRIC-GROUPS; ASYMPTOTICS; REPRESENTATIONS;
D O I
10.1214/12-AIHP519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Relative dimensions of isotypic components of Nth order tensor representations of the symmetric group on n letters give a Plancherel-type measure on the space of Young diagrams with n cells and at most N rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when N/root n converges to a constant. The main result of the paper is the proof of this conjecture.
引用
收藏
页码:678 / 713
页数:36
相关论文
共 50 条