Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering

被引:23
作者
Carrillo, J. A. [1 ]
Di Francesco, M.
Toscani, G.
机构
[1] Univ Autonoma Barcelona, Dept Matemat, ICREA, E-08193 Barcelona, Spain
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, RICAM, A-4040 Linz, Austria
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
porous medium equation; Barenblatt solutions; Wasserstein distance;
D O I
10.1090/S0002-9939-06-08594-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Euclidean Wasserstein distance between two compactly supported solutions of the one-dimensional porous medium equation having the same center of mass decays to zero for large times. As a consequence, we detect an improved L1-rate of convergence of solutions of the one-dimensional porous medium equation towards well-centered self-similar Barenblatt profiles, as time goes to infinity.
引用
收藏
页码:353 / 363
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 1988, NONLINEAR DIFFUSION
[2]  
ARONSON DG, 1986, LECT NOTES MATH, V1224, P1
[3]  
Carrillo JA, 2000, INDIANA U MATH J, V49, P113
[4]  
Carrillo JA, 2005, NEW TRENDS IN MATHEMATICAL PHYSICS, P234
[5]   Finite speed of propagation in porous media by mass transportation methods [J].
Carrillo, JA ;
Gualdani, MP ;
Toscani, G .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (10) :815-818
[6]  
Carrillo JA, 2003, REV MAT IBEROAM, V19, P971
[7]   Fine asymptotics for fast diffusion equations [J].
Carrillo, JA ;
Vázquez, JL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1023-1056
[8]   Long-time asymptotics for strong solutions of the thin film equation [J].
Carrillo, JA ;
Toscani, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (03) :551-571
[9]  
CARRILLO JA, 2005, IN PRESS ARCH RATION
[10]  
Chua KS, 2000, INDIANA U MATH J, V49, P143